代码如下所示,错误信息也如下所示:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import urllib.request
import tensorflow as tf
import numpy as np
IRIS_TRAINING = "iris_training.csv"
IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv"
IRIS_TEST = "iris_test.csv"
IRIS_TEST_RRL = "http://download.tensorflow.org/data/iris_test.csv"
if not os.path.exists(IRIS_TRAINING):
raw = urllib.request.urlopen(IRIS_TRAINING_URL).read()
with open(IRIS_TRAINING, 'w') as f:
f.write(raw)
if not os.path.exists(IRIS_TEST):
raw = urllib.request.urlopen(IRIS_TEST_RRL).read()
with open(IRIS_TEST, 'w') as f:
f.write(raw)
# load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=IRIS_TRAINING,
target_dtype=np.int,
features_dtype=np.float32)
test_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=IRIS_TEST,
target_dtype=np.int,
features_dtype=np.float32
)
# Specify that all features have real_valued data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]
# Build 3 layers DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 30],
n_class=3,
model_dir="/tem/iris_model")
# Define the training imputs
def get_train_inputs():
x = tf.constant(training_set.data)
y = tf.constant(training_set.target)
return x, y
# Fit model
classifier.fit(input_fn=get_train_inputs(), steps=2000)
# Define the test inputs
def get_test_inputs():
x = tf.constant(test_set.data)
y = tf.constant(test_set.target)
return x, y
# Evaluate accuracy
accuracy_score = classifier.evaluate(input_fn=get_test_inputs(), steps=1)["accuracy"]
print("\nTest Accuracy: {0:f}\n".format(accuracy_score))
这将打印以下堆栈跟踪:
Traceback (most recent call last):
File "/home/skyfacon/PycharmProjects/LinearFitting/IrisClassification.py", line 35, in <module>
features_dtype=np.float32
File "/home/skyfacon/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/base.py", line 69, in load_csv_without_header
data.append(np.asarray(row, dtype=features_dtype))
File "/home/skyfacon/anaconda3/envs/tensorflow/lib/python3.6/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: could not convert string to float: 'setosa'
Process finished with exit code 1