0

我正在使用 R 构建一个 mapreduce 程序,该程序使用遗传算法从数据集中的一组特征中提取相关特征。我需要将许多文件作为我的 mapreduce 作业的输入。下面的代码是我的 mapreduce 程序,但它仅适用于一个输入文件 (data.csv)。

library(caret)
library(dplyr)
library(rmr2)
Sys.setenv(HADOOP_CMD="/home/rania/hadoop-2.7.3/bin/hadoop")
Sys.getenv("HADOOP_CMD")
Sys.setenv(HADOOP_STREAMING="/home/rania/hadoop-streaming-2.7.3.jar")
library(rhdfs)
hdfs.init()
rmr.options(backend = "hadoop")
hdfs.mkdir("/user/rania/genetic")
hdfs.mkdir("/user/rania/genetic/data")

我将文件放在 hdfs 的一个文件夹中

hadoop fs -copyFromLocal /home/rania/Downloads/matrices/*.csv /user/rania/genetic/data/

这是地图功能

mon.map <- function(.,data){ 
data <- read.csv("/home/rania/Downloads/dataset.csv", header = T, sep = ";")
y <- c(1,0,1,0,1,1,1,1,0,0,1,0,1)

ga_ctrl <- gafsControl(functions = rfGA, # Assess fitness with RF
                       method = "cv")   # 10 fold cross validation
set.seed(10)
lev <- c("1","0")
rf_ga3 <- gafs(x = data, y = y,
                           iters = 10, # 100 generations of algorithm
                           popSize = 4, # population size for each generation
                           levels = lev,
                           gafsControl = ga_ctrl)
keyval(rf_ga3$ga$final, data[names(data) %in% rf_ga3$ga$final]  ) 
 }

这是reduce函数

mon.reduce <- function(k,v){
keyval(k,v) }

现在我申请 mapreduce 工作

hdfs.root = 'genetic' 
hdfs.data = file.path(hdfs.root, 'data')
hdfs.out = file.path(hdfs.root, 'out')
csv.format <- make.output.format("csv")
genetic = function (input, output) {mapreduce(input=input, output=output, input.format="csv",output.format=csv.format, map=mon.map,reduce=mon.reduce)}
out = genetic(hdfs.data, hdfs.out)

然后我们从 hdfs 打印结果

results <- from.dfs(out, format="csv")
print(results) 

或者

hdfs.cat("/genetic/out/part-00000")

我尝试更改地图功能以使其适用于许多文件,但失败了

mon.map <- function(.,data){ 
data <- list.files(path="/home/rania/Downloads/matrices/", full.names=TRUE, pattern="\\.csv") %>% lapply(read.csv, header=TRUE, sep=",") 
y <- c(1,0,1,0,1,1,1,1,0,0,1,0,1)
for (i in 1:4){
ga_ctrl <- gafsControl(functions = rfGA, # Assess fitness with RF
                       method = "cv")   # 10 fold cross validation
set.seed(10)
lev <- c("1","0")
rf_ga3 <- gafs(x = data[[i]], y = y,
                           iters = 10, # 100 generations of algorithm
                           popSize = 4, # population size for each generation
                           levels = lev,
                           gafsControl = ga_ctrl)
               }
keyval(rf_ga3$ga$final, do.call(cbind, Map(`[`, data, c(rf_ga3$ga$final)))  )  
 }

我可以在以前的地图功能中进行哪些更改以使其适用于许多输入文件?谢谢

4

0 回答 0