The ultimate in optimizing compilers would be one that searched among the space of programs for a program equivalent to the original but faster. This has been done in practice for very small basic blocks: https://en.wikipedia.org/wiki/Superoptimization
It sounds like the hard part is the exponential nature of the search space, but actually it's not; the hard part is, supposing you find what you're looking for, how do you prove that the new, faster program is really equivalent to the original?
Last time I looked into it, some progress had been made on proving certain properties of programs in certain contexts, particularly at a very small scale when you are talking about scalar variables or small fixed bit vectors, but not really on proving equivalence of programs at a larger scale when you are talking about complex data structures.
Has anyone figured out a way to do this yet, even 'modulo solving this NP-hard search problem that we don't know how to solve yet'?
Edit: Yes, we all know about the halting problem. It's defined in terms of the general case. Humans are an existence proof that this can be done for many practical cases of interest.