1

我正在使用它的gensim包在 Python 中使用 Doc2Vec 技术构建一个 NLP 聊天应用程序。我已经完成了标记化和词干化。我想从训练集中以及用户提出的问题中删除停用词(以测试它是否效果更好)。

这是我的代码。

import gensim
import nltk
from gensim import models
from gensim import utils
from gensim import corpora
from nltk.stem import PorterStemmer
ps = PorterStemmer()

sentence0 = models.doc2vec.LabeledSentence(words=[u'sampl',u'what',u'is'],tags=["SENT_0"])
sentence1 = models.doc2vec.LabeledSentence(words=[u'sampl',u'tell',u'me',u'about'],tags=["SENT_1"])
sentence2 = models.doc2vec.LabeledSentence(words=[u'elig',u'what',u'is',u'my'],tags=["SENT_2"])
sentence3 = models.doc2vec.LabeledSentence(words=[u'limit', u'what',u'is',u'my'],tags=["SENT_3"])
sentence4 = models.doc2vec.LabeledSentence(words=[u'claim',u'how',u'much',u'can',u'I'],tags=["SENT_4"])
sentence5 = models.doc2vec.LabeledSentence(words=[u'retir',u'i',u'am',u'how',u'much',u'can',u'elig',u'claim'],tags=["SENT_5"])
sentence6 = models.doc2vec.LabeledSentence(words=[u'resign',u'i',u'have',u'how',u'much',u'can',u'i',u'claim',u'elig'],tags=["SENT_6"])
sentence7 = models.doc2vec.LabeledSentence(words=[u'promot',u'what',u'is',u'my',u'elig',u'post',u'my'],tags=["SENT_7"])
sentence8 = models.doc2vec.LabeledSentence(words=[u'claim',u'can,',u'i',u'for'],tags=["SENT_8"])
sentence9 = models.doc2vec.LabeledSentence(words=[u'product',u'coverag',u'cover',u'what',u'all',u'are'],tags=["SENT_9"])
sentence10 = models.doc2vec.LabeledSentence(words=[u'hotel',u'coverag',u'cover',u'what',u'all',u'are'],tags=["SENT_10"])
sentence11 = models.doc2vec.LabeledSentence(words=[u'onlin',u'product',u'can',u'i',u'for',u'bought',u'through',u'claim',u'sampl'],tags=["SENT_11"])
sentence12 = models.doc2vec.LabeledSentence(words=[u'reimburs',u'guidelin',u'where',u'do',u'i',u'apply',u'form',u'sampl'],tags=["SENT_12"])
sentence13 = models.doc2vec.LabeledSentence(words=[u'reimburs',u'procedur',u'rule',u'and',u'regul',u'what',u'is',u'the',u'for'],tags=["SENT_13"])
sentence14 = models.doc2vec.LabeledSentence(words=[u'can',u'i',u'submit',u'expenditur',u'on',u'behalf',u'of',u'my',u'friend',u'and',u'famili',u'claim',u'and',u'reimburs'],tags=["SENT_14"])
sentence15 = models.doc2vec.LabeledSentence(words=[u'invoic',u'bills',u'procedur',u'can',u'i',u'submit',u'from',u'shopper stop',u'claim'],tags=["SENT_15"])
sentence16 = models.doc2vec.LabeledSentence(words=[u'invoic',u'bills',u'can',u'i',u'submit',u'from',u'pantaloon',u'claim'],tags=["SENT_16"])
sentence17 = models.doc2vec.LabeledSentence(words=[u'invoic',u'procedur',u'can',u'i',u'submit',u'invoic',u'from',u'spencer',u'claim'],tags=["SENT_17"])

# User asks a question.

document = input("Ask a question:")
tokenized_document = list(gensim.utils.tokenize(document, lowercase = True, deacc = True))
#print(type(tokenized_document))
stemmed_document = []
for w in tokenized_document:
    stemmed_document.append(ps.stem(w))
sentence19 = models.doc2vec.LabeledSentence(words= stemmed_document, tags=["SENT_19"])

# Building vocab.
sentences = [sentence0,sentence1,sentence2,sentence3, sentence4, sentence5,sentence6, sentence7, sentence8, sentence9, sentence10, sentence11, sentence12, sentence13, sentence14, sentence15, sentence16, sentence17, sentence19]

#I tried to remove the stop words but it didn't work out as LabeledSentence object has no attribute lower.
stoplist = set('for a of the and to in'.split())
texts = [[word for word in document.lower().split() if word not in stoplist]
          for document in sentences]
..

有没有办法可以sentences直接删除停用词并获得一组没有停用词的新词汇?

4

1 回答 1

4

您的sentences对象已经是一个LabeledSentence对象列表。您在上面构建这些;它们包括一个字符串列表 inwords和一个字符串列表 in tags

因此,该列表中的每个项目(document在您的列表理解中)不能有一个像.lower()应用到它的字符串方法。(也不需要是.split(),因为它words已经是单独的标记。)

最干净的方法是在用于构造对象之前从单词列表中删除停用词。LabeledSentence例如,您可以创建一个without_stopwords()在顶部定义的函数。然后,您创建LabeledSentence对象的行可能会像:

sentence0 = LabeledSentence(words=remove_stopwords([u'sampl', u'what', u'is']), 
                            tags=["SENT_0"])

或者,您可以改变现有LabeledSentence对象,以便它们的每个words属性现在都缺少停用词。这会将您的最后一行替换为以下内容:

for doc in sentences:
    doc.words = [word for word in doc.words if word not in stoplist]
texts = sentences

另外,您没有问但应该知道的事情:

  • TaggedDocument现在是 Doc2Vec 文本对象的首选示例类名称 - 但实际上任何具有两个必需属性的对象都words可以tags正常工作。

  • Doc2Vec 并没有在玩具大小的小数据集上显示许多所需的属性——如果建立在几十个句子上的模型没有做任何有用的事情,或者误导什么预处理/元参数选项是最好的,不要感到惊讶。(数以万计的文本,以及至少几十个词长的文本,对于有意义的结果要好得多。)

  • 很多 Word2Vec/Doc2Vec 工作不涉及词干或停用词删除,但有时它可能会有所帮助。

于 2017-06-22T21:05:31.530 回答