1

我正在尝试编写自定义度量函数以在以这种方式编写的编译步骤中设置:

self.model.compile(optimizer=sgd,loss='categorical_crossentropy',metrics=[self.dice_similarity_coefficient_metric,self.positive_predictive_value_metric,self.sensitivity_metric])

我用这种方式写了 Dice Similarity Coefficient、Positive Predictive Value 和 Similarity:

  • FP = 误报
  • TP = 真阳性
  • FN = 假阴性

 def dice_similarity_coefficient_metric(self, y_true, y_pred):
        y_true = np.array(K.eval(y_true))
        y_pred = np.array(K.eval(y_pred))
        FP = np.sum(y_pred & np.logical_not(y_true)).astype(float)
        TP = np.sum(y_true & y_pred).astype(float)
        FN = np.sum(np.logical_not(y_pred) & 
        np.logical_not(y_true)).astype(float)
        return K.variable(np.array((2 * TP) / (FP + (2 * TP) + FN + 
        K.epsilon())))

    def positive_predictive_value_metric(self, y_true, y_pred):
        y_true = np.array(K.eval(y_true))
        y_pred = np.array(K.eval(y_pred))
        FP = np.sum(y_pred & np.logical_not(y_true)).astype(float)
        TP = np.sum(y_true & y_pred).astype(float)
        return K.variable(np.array(TP / (FP + TP + K.epsilon())))

    def sensitivity_metric(self, y_true, y_pred):
        y_true = np.array(K.eval(y_true))
        y_pred = np.array(K.eval(y_pred))
        TP = np.sum(y_true & y_pred).astype(float)
        FN = np.sum(np.logical_not(y_pred) & 
        np.logical_not(y_true)).astype(float)
        return K.variable(np.array(TP / (TP + FN + K.epsilon())))

当我运行代码时,出现以下错误:

InvalidArgumentError(有关回溯,请参见上文):您必须使用 dtype float [[Node: dense_3_target = Placeholderdtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task 为占位符张量“dense_3_target”提供一个值:0/cpu:0"]]

有人可以解释一下问题出在哪里吗?我哪里错了?

谢谢

4

1 回答 1

0

也许,最好使用后端函数来定义指标。例如:

def false_negatives(Y_true, Y_pred):
    return K.sum(K.round(K.clip(Y_true - Y_pred, 0, 1)))

可以使用 5 FN 对示例数据进行检查:

y_true = np.array([[1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 1.0]], dtype=np.float32)
y_pred = np.array([[0.3, 0.99, 0.99, 0.1], [0.6, 0.99, 0.99, 0.1], [0.1, 0.99, 0.99, 0.1]], dtype=np.float32)
n_fn = np.sum((y_true - y_pred) > 0.5)
Y_true = K.placeholder((None, 4), dtype=K.floatx())
Y_pred = K.placeholder((None, 4), dtype=K.floatx())
n_fn = false_negatives(Y_true, Y_pred).eval(inputs_to_values={Y_true: y_true, Y_pred: y_pred})

高温高压

于 2017-07-06T23:35:07.590 回答