我正在使用基因表达编程库演示来获得替代数学表达式。我下载了 uncommons.watchmaker 框架的所有类文件,并创建了一个无需 jar 文件即可运行的新项目。Java 项目(完整源代码)附在此处。
我对演示进行了一些修改,以生成给定数字的替代数学表达式。例如,假设我想得到 2 - 11 之间的所有数字组合,它们相乘得到 12。我会得到 6 * 2、3 * 4、3 * 2 * 2、2 * 6、4 * 3、2 * 2 * 3. 主程序为TestMainProg.java
我有兴趣知道如何打印最后一代的人口。
发现:
在制表商 API 中,它说EvolutionEngine 接口中的 EvolutionPopulation()可用于获取最终人口数据。但是我不确定如何调用该方法并打印数据。查看 EvolutionEngine.java,EvaluatedCandidate.java 和 AbstractEvolutionEngine.java 将很有用。
下面是我使用的代码:
import java.util.ArrayList;
import java.util.List;
import org.gep4j.GeneFactory;
import org.gep4j.INode;
import org.gep4j.INodeFactory;
import org.gep4j.IntegerConstantFactory;
import org.gep4j.KarvaEvaluator;
import org.gep4j.MutationOperator;
import org.gep4j.RecombinationOperator;
import org.gep4j.SimpleNodeFactory;
import org.gep4j.math.Multiply;
import org.uncommons.maths.random.MersenneTwisterRNG;
import org.uncommons.maths.random.Probability;
import org.uncommons.watchmaker.framework.EvolutionEngine;
import org.uncommons.watchmaker.framework.EvolutionObserver;
import org.uncommons.watchmaker.framework.EvolutionaryOperator;
import org.uncommons.watchmaker.framework.FitnessEvaluator;
import org.uncommons.watchmaker.framework.GenerationalEvolutionEngine;
import org.uncommons.watchmaker.framework.PopulationData;
import org.uncommons.watchmaker.framework.operators.EvolutionPipeline;
import org.uncommons.watchmaker.framework.selection.RouletteWheelSelection;
import org.uncommons.watchmaker.framework.termination.TargetFitness;
public class TestMainProg {
final KarvaEvaluator karvaEvaluator = new KarvaEvaluator();
public INode[] bestIndividual=null;
public void go() {
List<INodeFactory> factories = new ArrayList<INodeFactory>();
// init the GeneFactory that will create the individuals
//factories.add(new SimpleNodeFactory(new Add()));
factories.add(new SimpleNodeFactory(new Multiply()));
factories.add(new IntegerConstantFactory(2, 35)); //12,60,1 and the target number
double num = 36.0;
GeneFactory factory = new GeneFactory(factories, 20); //20 is the gene size
List<EvolutionaryOperator<INode[]>> operators = new ArrayList<EvolutionaryOperator<INode[]>>();
operators.add(new MutationOperator<INode[]>(factory, new Probability(0.01d)));
operators.add(new RecombinationOperator<INode[]>(factory, new Probability(0.5d)));
EvolutionaryOperator<INode[]> pipeline = new EvolutionPipeline<INode[]>(operators);
FitnessEvaluator<INode[]> evaluator = new FitnessEvaluator<INode[]>() {
@Override
public double getFitness(INode[] candidate, List<? extends INode[]> population) {
double result = (Double) karvaEvaluator.evaluate(candidate);
double error = Math.abs(num - result);
return error;
}
@Override
public boolean isNatural() {
return false;
}
};
EvolutionEngine<INode[]> engine = new GenerationalEvolutionEngine<INode[]>(factory, pipeline, evaluator,
new RouletteWheelSelection(), new MersenneTwisterRNG());
// add an EvolutionObserver so we can print out the status.
EvolutionObserver<INode[]> observer = new EvolutionObserver<INode[]>() {
@Override
public void populationUpdate(PopulationData<? extends INode[]> data) {
bestIndividual = data.getBestCandidate();
System.out.printf("Generation %d, PopulationSize = %d, error = %.1f, value = %.1f, %s\n",
data.getGenerationNumber(), data.getPopulationSize(),
Math.abs(/*Math.PI*/ num - (Double)karvaEvaluator.evaluate(bestIndividual)),
(Double)karvaEvaluator.evaluate(bestIndividual),
karvaEvaluator.print(bestIndividual));
}
};
engine.addEvolutionObserver(observer);
//to get the total population
engine.evolvePopulation(100,10,new TargetFitness(0.0001, false));
}
public static final void main(String args[]) {
new TestMainProg().go();
}
}