我想知道在 Sklearn 中安装 MLP 分类器后是否有任何方法可以可视化或找到最重要/最有贡献的特征。
简单的例子:
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import LeaveOneOut
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
data= pd.read_csv('All.csv', header=None)
X, y = data.iloc[0:, 0:249].values, data.iloc[0:,249].values
sc = StandardScaler()
mlc = MLPClassifier(activation = 'relu', random_state=1,nesterovs_momentum=True)
loo = LeaveOneOut()
pipe = make_pipeline(sc, mlc)
parameters = {"mlpclassifier__hidden_layer_sizes":[(168,),(126,),(498,),(166,)],"mlpclassifier__solver" : ('sgd','adam'), "mlpclassifier__alpha": [0.001,0.0001],"mlpclassifier__learning_rate_init":[0.005,0.001] }
clf = GridSearchCV(pipe, parameters,n_jobs= -1,cv = loo)
clf.fit(X, y)
model = clf.best_estimator_
print("the best model and parameters are the following: {} ".format(model))