5

我正在尝试调整此DCGAN 代码以使其能够处理 2x80 数据样本。

所有生成器层都不是tf.nn.deconv2dh0,即 ReLu。每个级别的生成器过滤器大小当前为:

Generator: h0: s_h16 x s_w16: 1  x  5
Generator: h1: s_h8 x s_w8: 1  x  10
Generator: h2: s_h4 x s_w4: 1  x  20
Generator: h3: s_h2 x s_w2: 1  x  40
Generator: h4: s_h x s_w: 2  x  80

由于我的数据的性质,我希望它们最初生成为 2 x ...,即过滤器为2 x 52 x 102 x 202 x 402 x 80。但是,当我只是手动输入s_h16 = 2 * s_h16等等时s_h2 = 2 * s_h2,我遇到了以下错误:

ValueError: Shapes (64, 1, 40, 64) and (64, 2, 40, 64) are not compatible

所以我知道错误发生在 h3 级别,但我无法完全追踪它(这里是 64 是批量大小)。有什么想法可以解决这个问题吗?


编辑:编辑的 DCGANs 代码在此存储库中,在按照说明设置 DCGAN-tensorflow 后,您必须将 Data_npy 文件夹放入DCGAN-tensorflow/data文件夹中。

然后运行python main.py --dataset Data_npy --input_height=2 --output_height=2 --train将为您提供我得到的错误。

完整的错误回溯如下所示:

Traceback (most recent call last):
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 560, in merge_with
    new_dims.append(dim.merge_with(other[i]))
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 135, in merge_with
    self.assert_is_compatible_with(other)
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 108, in assert_is_compatible_with
    % (self, other))
ValueError: Dimensions 1 and 2 are not compatible

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "main.py", line 97, in <module>
    tf.app.run()
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 48, in run
    _sys.exit(main(_sys.argv[:1] + flags_passthrough))
  File "main.py", line 80, in main
    dcgan.train(FLAGS)
  File "/home/marija/DCGAN-tensorflow/model.py", line 180, in train
    .minimize(self.g_loss, var_list=self.g_vars)
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/training/optimizer.py", line 315, in minimize
    grad_loss=grad_loss)
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/training/optimizer.py", line 386, in compute_gradients
    colocate_gradients_with_ops=colocate_gradients_with_ops)
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py", line 580, in gradients
    in_grad.set_shape(t_in.get_shape())
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 413, in set_shape
    self._shape = self._shape.merge_with(shape)
  File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 564, in merge_with
    (self, other))
ValueError: Shapes (64, 1, 40, 64) and (64, 2, 40, 64) are not compatible
4

1 回答 1

2

在你的 ops.py 文件中

您的问题来自 deconv 过滤器中的跨步大小,将标题修改conv2ddeconv2d

def conv2d(input_, output_dim, 
       k_h=5, k_w=5, d_h=1, d_w=2, stddev=0.02,
       name="conv2d"):

def deconv2d(input_, output_shape,
       k_h=5, k_w=5, d_h=1, d_w=2, stddev=0.02,
       name="deconv2d", with_w=False):

就像这样,它开始为我训练。我没有检查输出。

(64, 1, 40, 64)问题是考虑输入的形状,在反向传播过程中,将高度增加 2(d_h 的原始值)将导致形状。(因为你只有 2 个值)

此外,当您只有 2 个元素时,您可能会考虑更改k_h=5k_h=2在高度上采用 5 个元素并没有多大意义。

于 2017-06-09T05:17:05.823 回答