0
  • 视窗 7 x64
  • Python 3.5.2
  • CUDA 工具包 8.0.61
  • 张量流包:tensorflow-gpu-1.2.0rc0
  • cudnn 8.0(用于 CUDA 8.0 工具包)

测试:

# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))

结果:

2017-05-30 13:50:33.021124: I C:\...\gpu_device.cc:906] Found device 0 with properties:
name: NVS 5200M
major: 2 minor: 1 memoryClockRate (GHz) 1.344
pciBusID 0000:01:00.0
Total memory: 1.00GiB
Free memory: 886.41MiB
2017-05-30 13:50:33.022124: I C:\...\gpu_device.cc:927] DMA: 0
2017-05-30 13:50:33.022124: I C:\...\gpu_device.cc:937] 0:   Y
2017-05-30 13:50:33.022124: I C:\...\gpu_device.cc:969] Ignoring visible gpu device (device: 0, name: NVS 5200M, pci bus id: 0000:01:00.0) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.
Device mapping: no known devices.
2017-05-30 13:50:33.024124: I C:\...\direct_session.cc:265] Device mappin
g:

MatMul: (MatMul): /job:localhost/replica:0/task:0/cpu:0
2017-05-30 13:50:33.026124: I C:\...\simple_placer.cc:847] MatMul: (MatMul)/job:localhost/replica:0/task:0/cpu:0
b: (Const): /job:localhost/replica:0/task:0/cpu:0
2017-05-30 13:50:33.027124: I C:\...\simple_placer.cc:847] b: (Const)/job:localhost/replica:0/task:0/cpu:0
a: (Const): /job:localhost/replica:0/task:0/cpu:0
2017-05-30 13:50:33.027124: I C:\...\simple_placer.cc:847] a: (Const)/job:localhost/replica:0/task:0/cpu:0
[[ 22.  28.]
 [ 49.  64.]]

我假设我的问题是“忽略具有 CUDA 计算能力 2.1 的可见 gpu 设备。所需的最低 Cuda 能力是 3.0。” 因此,我的硬件似乎仅限于 CUDA 2.1,但不清楚 3.0 的要求来自何处。是 CUDA 工具包还是 tensorflow 库?

4

1 回答 1

0

您可以在安装页面上找到有关 GPU 支持的说明。

具有 CUDA 计算能力 3.0 或更高版本的 GPU 卡。有关受支持的 GPU 卡的列表,请参阅 NVIDIA 文档。

尽管如此,还是有一些方法可以使用计算能力较低的 GPU。参考这个

于 2017-05-30T18:17:39.870 回答