我的目标是分别从多个 numpy 数组中生成多个 png 文件,这些数组是从我的 HD 中的医学图像加载的。为了让事情变得更快,我正在使用 dask 延迟。这是我的工作代码:
import os.path
from glob import glob
import nibabel as nib
import numpy as np
from dask import delayed
def process(data):
# Need to have the import inside so that multiprocessing works.
# Apparently doesn't solve the issue anyway..
import matplotlib.pyplot as plt
outpath = '/Users/user/outputdir/'
name = os.path.basename(data.get_filename())
savename = name[:name.index('.')] + '.png'
plt.imshow(np.rot90(data.get_data()[15:74, 6:82, 18, 0]),
extent=[0, 1, 0, 1], aspect=1.28, cmap='gray')
plt.axis('off')
out = os.path.join(outpath, savename)
plt.savefig(out)
plt.close()
return out
L = []
for fn in glob("/Users/user/imagefiles/mb*.nii.gz"):
nifti = delayed(nib.load)(fn)
outpng = delayed(process)(nifti)
L.append(outpng)
results = delayed(print)(L)
results.compute()
我的问题是,每次运行后,一些输出图像都是空的(png 中没有任何内容),并且哪些图像是空的似乎很随机,因为所有输入数据都是有效的。
我怀疑这是多处理和 matplotlib 的问题,如其他相关线程中所见。
有人对如何使用它有建议dask
吗?
编辑:最小的工作示例
import os.path
import random
import string
import numpy as np
from dask import delayed
def gendata(fn):
return
def process(data):
# Need to have the import inside so that multiprocessing works.
import matplotlib.pyplot as plt
outpath = '/Users/user/Pictures/test/'
name = ''.join(random.choices(string.ascii_lowercase, k=10))
savename = name + '.png'
data = np.random.randint(0, 255, size=(100,100,20,2))
plt.imshow(np.rot90(data[15:74, 6:82, 18, 0]),
extent=[0, 1, 0, 1], aspect=1.28, cmap='gray')
plt.axis('off')
out = os.path.join(outpath, savename)
plt.savefig(out)
plt.close()
return out
L = []
for fn in range(0, 10):
nifti = delayed(gendata)(fn)
outpng = delayed(process)(nifti)
L.append(outpng)
results = delayed(print)(L)
results.compute()