使用使用 Keras 的 VGG 16,我正在尝试运行三类分类问题,代码如下:
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras import applications
from keras.optimizers import SGD
from keras import backend as K
K.set_image_dim_ordering('tf')
img_width, img_height = 48, 48
top_model_weights_path = 'vgg16_1.h5'
train_data_dir = 'data6/train'
validation_data_dir = 'data6/validation'
nb_train_samples = 400
nb_validation_samples = 100
epochs = 10
batch_size = 32
def save_bottlebeck_features():
datagen = ImageDataGenerator(rescale=1. / 255)
model = applications.VGG16(include_top=False, weights='imagenet', input_shape=(48, 48, 3))
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False)
bottleneck_features_train = model.predict_generator(
generator, nb_train_samples // batch_size)
np.save(open('bottleneck_features_train', 'wb'),bottleneck_features_train)
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False)
bottleneck_features_validation = model.predict_generator(
generator, nb_validation_samples // batch_size)
np.save(open('bottleneck_features_validation', 'wb'),bottleneck_features_validation)
def train_top_model():
train_data = np.load(open('bottleneck_features_train', 'rb'))
train_labels = np.array(([0]*(nb_train_samples // 3) + [1]*(nb_train_samples // 3) +
[2]*(nb_train_samples // 3)))
validation_data = np.load(open('bottleneck_features_validation', 'rb'))
validation_labels = np.array([0]*(nb_validation_samples // 3) + [1]*(nb_validation_samples // 3) +
[2]*(nb_validation_samples // 3))
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(3, activation='softmax'))
sgd = SGD(lr=1e-2, decay=0.00371, momentum=0.9, nesterov=False)
model.compile(optimizer=sgd,
loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
save_bottlebeck_features()
train_top_model()
运行代码,我收到错误:
检查目标时出错:预期 dense_20 的形状为 (None, 3) 但得到的数组的形状为 (1200, 1)
请让我知道我必须对代码进行哪些更改才能使其正常运行。我正在使用带有 Python 3.5.2 的 Anaconda,在 Windows 机器上运行。