您可以使用iteritems
:
def check_type(homicide_df):
for i, age in homicide_df['Perpetrator Age'].iteritems():
if type(age) is str:
print(i, age, type(age))
homicide_df = pd.DataFrame({'Perpetrator Age':[10, '15', 'aa']})
print (homicide_df)
Perpetrator Age
0 10
1 15
2 aa
def check_type(homicide_df):
for i, age in homicide_df['Perpetrator Age'].iteritems():
if type(age) is str:
print(i, age, type(age))
check_type(homicide_df)
1 15 <class 'str'>
2 aa <class 'str'>
如果值是混合的 - 数字与非数字,更好的是检查:
def check_type(homicide_df):
return homicide_df.loc[homicide_df['Perpetrator Age'].apply(type)==str,'Perpetrator Age']
print (check_type(homicide_df))
1 15
2 aa
Name: Perpetrator Age, dtype: object
如果所有值都是数字,但所有type
s 都是str
:
print ((homicide_df['Perpetrator Age'].apply(type)==str).all())
True
homicide_df = pd.DataFrame({'Perpetrator Age':['10', '15']})
homicide_df['Perpetrator Age'] = homicide_df['Perpetrator Age'].astype(int)
print (homicide_df)
Perpetrator Age
0 10
1 15
print (homicide_df['Perpetrator Age'].dtypes)
int32
但是,如果一些带有字符串的数字:
转换为int
的解决方案,将to_numeric
非数值替换为NaN
. 然后有必要替换NaN
为一些类似的数字0
并最后转换为int
:
homicide_df = pd.DataFrame({'Perpetrator Age':[10, '15', 'aa']})
homicide_df['Perpetrator Age']=pd.to_numeric(homicide_df['Perpetrator Age'], errors='coerce')
print (homicide_df)
Perpetrator Age
0 10.0
1 15.0
2 NaN
homicide_df['Perpetrator Age'] = homicide_df['Perpetrator Age'].fillna(0).astype(int)
print (homicide_df)
Perpetrator Age
0 10
1 15
2 0