4

有一些类似的问题,但没有一个能解决我的问题,所以我在这里发布一个新问题。

当我尝试为函数提供 3 维 numpy 数组作为输入时,Cython 给了我一个错误,告诉我:“ValueError:缓冲区的维数错误(预期为 2,得到 3)”。但是当我给它一个二维数组时,它会崩溃(python 停止响应,我认为这是因为我试图对二维数组执行 3 维矩阵运算)。

然后,我尝试将输入排版为 3 维数组,但函数仍需要 2 维数组。我认为我的代码可能有问题,但是当我摆脱 cython 变量声明并将其作为 python 文件运行时,一切都很好。

这是函数声明:

def isfc(np.ndarray[double, ndim=3] multi_activations, int gaussian_variance):
  #cython variable declaration
  cdef int time_len, activations_len, subj_num, timepoint, subj
  cdef np.ndarray[double, ndim=2] correlations_vector, normalized_activations, coefficients,normalized_sum_activations
  cdef np.ndarray[double, ndim=3] c_activations, activations_sum, correlations_mean
  cdef np.ndarray[double, ndim=4] correlations
  cdef np.ndarray gaussian_array, coefficients_sum, coefficient, sigma_activations, sigma_activations_sum

  #assign initial parameters
  **subj_num, activations_len, time_len= multi_activations.shape[0],multi_activations.shape[1],multi_activations.shape[2]**
  coefficients_sum = np.zeros(time_len)
  correlations= np.zeros([subj_num, time_len,activations_len,activations_len])
  correlations_vector = np.zeros([time_len,(activations_len * (activations_len-1) / 2)])
  coefficients = np.zeros([time_len, activations_len,time_len])
  gaussian_array = np.array([exp(-timepoint**2/2/gaussian_variance)/sqrt(2*pi*gaussian_variance) for timepoint in range(-time_len+1,time_len)])
  **c_activations = np.array(multi_activations)**

有问题的输入是 multi_activations,它只在标有 ** 的行上使用,然后再复制到 3 维 cython 缓冲区。

我已将错误范围缩小到函数调用,特别是当我将 3 维数组作为 multi_activations 输入传递给该函数时。我在函数调用时遇到错误,而不是在函数内。这只是输入参数的缓冲区大小不匹配。任何帮助将不胜感激

4

1 回答 1

1

错误发生在该行:

coefficients = np.zeros([time_len, activations_len,time_len])

我收到一条有用的错误消息,指向正确的行。如果您不这样做,那么很可能您在构建过程中移动或重命名了文件,因此在运行时找不到 .pyx 文件。

解决方案是将 的类型更改为coefficients3D 数组,或者使用np.zeros.


将二维数组传递给它时,我无法重现您的崩溃 - 我只是得到一个ValueError: Buffer has wrong number of dimensions

于 2017-05-20T07:18:59.183 回答