目的是创建一个 TfRecords 数据库。给定:我有 23 个文件夹,每个文件夹包含 7500 个图像和 23 个文本文件,每个文件都有 7500 行描述不同文件夹中 7500 个图像的特征。
我通过以下代码创建了数据库:
import tensorflow as tf
import numpy as np
from PIL import Image
def _Float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def create_image_annotation_data():
# Code to read images and features.
# images represent a list of numpy array of images, and features_labels represent a list of strings
# where each string represent the whole set of features for each image.
return images, features_labels
# This is the starting point of the program.
# Now I have the images stored as list of numpy array, and the features as list of strings.
images, annotations = create_image_annotation_data()
tfrecords_filename = "database.tfrecords"
writer = tf.python_io.TFRecordWriter(tfrecords_filename)
for img, ann in zip(images, annotations):
# Note that the height and width are needed to reconstruct the original image.
height = img.shape[0]
width = img.shape[1]
# This is how data is converted into binary
img_raw = img.tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'height': _int64_feature(height),
'width': _int64_feature(width),
'image_raw': _bytes_feature(img_raw),
'annotation_raw': _bytes_feature(tf.compat.as_bytes(ann))
}))
writer.write(example.SerializeToString())
writer.close()
reconstructed_images = []
record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
height = int(example.features.feature['height']
.int64_list
.value[0])
width = int(example.features.feature['width']
.int64_list
.value[0])
img_string = (example.features.feature['image_raw']
.bytes_list
.value[0])
annotation_string = (example.features.feature['annotation_raw']
.bytes_list
.value[0])
img_1d = np.fromstring(img_string, dtype=np.uint8)
reconstructed_img = img_1d.reshape((height, width, -1))
annotation_reconstructed = annotation_string.decode('utf-8')
因此,在将图像和文本转换为 tfRecords 并能够读取它们并将图像转换为 numpy 并将(二进制文本)转换为 python 中的字符串之后,我尝试通过使用带有阅读器的 filename_queue 来加倍努力(目的是为图提供一批数据,而不是一次提供一组数据。此外,目的是通过不同的线程对示例队列进行入队和出队,因此,可以更快地训练网络)
因此,我使用了以下代码:
import tensorflow as tf
import numpy as np
import time
image_file_list = ["database.tfrecords"]
batch_size = 16
# Make a queue of file names including all the JPEG images files in the relative
# image directory.
filename_queue = tf.train.string_input_producer(image_file_list, num_epochs=1, shuffle=False)
reader = tf.TFRecordReader()
# Read a whole file from the queue, the first returned value in the tuple is the
# filename which we are ignoring.
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string),
'annotation_raw': tf.FixedLenFeature([], tf.string)
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
annotation = tf.decode_raw(features['annotation_raw'], tf.float32)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
image = tf.reshape(image, [height, width, 3])
# Note that the minimum after dequeue is needed to make sure that the queue is not empty after dequeuing so that
# we don't run into errors
'''
min_after_dequeue = 100
capacity = min_after_dequeue + 3 * batch_size
ann, images_batch = tf.train.batch([annotation, image],
shapes=[[1], [112, 112, 3]],
batch_size=batch_size,
capacity=capacity,
num_threads=1)
'''
# Start a new session to show example output.
with tf.Session() as sess:
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('C:/Users/user/Documents/tensorboard_logs/New_Runs', sess.graph)
# Required to get the filename matching to run.
tf.global_variables_initializer().run()
# Coordinate the loading of image files.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for steps in range(16):
t1 = time.time()
annotation_string, batch, summary = sess.run([annotation, image, merged])
t2 = time.time()
print('time to fetch 16 faces:', (t2 - t1))
print(annotation_string)
tf.summary.image("image_batch", image)
train_writer.add_summary(summary, steps)
# Finish off the filename queue coordinator.
coord.request_stop()
coord.join(threads)
最后,运行上述代码后,出现如下错误: OutOfRangeError(回溯见上文):FIFOQueue '_0_input_producer' is closed and has enough elements (requested 1, current size 0) [[Node: ReaderReadV2 = ReaderReadV2[_device= "/job:localhost/replica:0/task:0/cpu:0"](TFRecordReaderV2, input_producer)]]
另一个问题:
- 如何解码二进制数据库(tfrecords)以检索“作为python字符串数据结构”存储的特征。
- 如何使用tf.train.batch创建一批示例来馈送网络。
谢谢!!任何帮助深表感谢。