将 ARIMA 模型拟合到您的数据会得到 a ARIMA(0,0,0)
,这意味着拟合值取决于 0 个先前的观测值和 0 个先前的拟合误差。这再次意味着 ARIMA 模型(基于此数据)可以做出的最佳预测器是一个常数。对于每次观察,无论之前的观察如何,它都会预测相同的值。
library(forecast)
df <- c(23, 22, 21, 31, 29, 13, 15, 20, 15, 26, 11, 24, 14, 18, 15, 21,
25, 23 , 27, 30, 19, 18 , 20 , 13 , 23 , 40 ,14 , 15 , 20 ,14 , 9 , 22 ,
14 , 24 ,26 ,22 , 23 , 16 , 24 , 19 ,14 , 10 ,17 , 12, 11, 15 , 9 , 24 , 1,
7, 22, 28)
# auto.arima() selects the ARIMA(r, s, q) model with the highest AIC-score:
(auto.arima(df))
# Series: ts
# ARIMA(0,0,0) with non-zero mean
#Coefficients:
# intercept 19.0000
# s.e. 0.9642
# sigma^2 estimated as 49.29: log likelihood=-174.62
# AIC=353.25 AICc=353.49 BIC=357.15
forecast.Arima(object = auto.arima(df), h = 10)
# Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
# 53 19 10.00226 27.99774 5.239138 32.76086
# 54 19 10.00226 27.99774 5.239138 32.76086
# 55 19 10.00226 27.99774 5.239138 32.76086
# 56 19 10.00226 27.99774 5.239138 32.76086
# 57 19 10.00226 27.99774 5.239138 32.76086
# 58 19 10.00226 27.99774 5.239138 32.76086
# 59 19 10.00226 27.99774 5.239138 32.76086
# 60 19 10.00226 27.99774 5.239138 32.76086
# 61 19 10.00226 27.99774 5.239138 32.76086
# 62 19 10.00226 27.99774 5.239138 32.76086