我希望能够获取一个字典(记录)列表,其中一些列具有一个值列表作为单元格的值。这是一个例子
[{'fruit': 'apple', 'age': 27}, {'fruit':['apple', 'banana'], 'age': 32}]
如何获取此输入并对其执行特征哈希(在我的数据集中,我有数千列)。目前我正在使用一种热编码,但这似乎消耗了很多内存(比我系统上的内存还多)。
我尝试如上所述获取我的数据集并收到错误:
x__ = h.transform(data)
Traceback (most recent call last):
File "<ipython-input-14-db4adc5ec623>", line 1, in <module>
x__ = h.transform(data)
File "/usr/local/lib/python2.7/dist-packages/sklearn/feature_extraction/hashing.py", line 142, in transform
_hashing.transform(raw_X, self.n_features, self.dtype)
File "sklearn/feature_extraction/_hashing.pyx", line 52, in sklearn.feature_extraction._hashing.transform (sklearn/feature_extraction/_hashing.c:2103)
TypeError: a float is required
我还尝试将其转换为数据框并将其传递给哈希器:
x__ = h.transform(x_y_dataframe)
Traceback (most recent call last):
File "<ipython-input-15-109e7f8018f3>", line 1, in <module>
x__ = h.transform(x_y_dataframe)
File "/usr/local/lib/python2.7/dist-packages/sklearn/feature_extraction/hashing.py", line 142, in transform
_hashing.transform(raw_X, self.n_features, self.dtype)
File "sklearn/feature_extraction/_hashing.pyx", line 46, in sklearn.feature_extraction._hashing.transform (sklearn/feature_extraction/_hashing.c:1928)
File "/usr/local/lib/python2.7/dist-packages/sklearn/feature_extraction/hashing.py", line 138, in <genexpr>
raw_X = (_iteritems(d) for d in raw_X)
File "/usr/local/lib/python2.7/dist-packages/sklearn/feature_extraction/hashing.py", line 15, in _iteritems
return d.iteritems() if hasattr(d, "iteritems") else d.items()
AttributeError: 'unicode' object has no attribute 'items'
知道如何使用 pandas 或 sklearn 实现这一点吗?或者也许我可以一次构建我的虚拟变量几千行?
这是我如何使用 pandas 获取我的虚拟变量:
def one_hot_encode(categorical_labels):
res = []
tmp = None
for col in categorical_labels:
v = x[col].astype(str).str.strip('[]').str.get_dummies(', ')#cant set a prefix
if len(res) == 2:
tmp = pandas.concat(res, axis=1)
del res
res = []
res.append(tmp)
del tmp
tmp = None
else:
res.append(v)
result = pandas.concat(res, axis=1)
return result