7

我完全承认我可能在这里设置了错误的条件空间,但由于某种原因,我根本无法让它发挥作用。我正在尝试使用 hyperopt 来调整逻辑回归模型,并且根据求解器的不同,还有一些其他参数需要探索。如果您选择 liblinear 求解器,您可以选择惩罚,根据惩罚,您还可以选择对偶。但是,当我尝试在此搜索空间上运行 hyperopt 时,它一直给我一个错误,因为它传递了整个字典,如下所示。有任何想法吗?

我得到的错误是

ValueError: Logistic Regression supports only liblinear, newton-cg, lbfgs and sag solvers, got {'solver': 'sag'}'  

这种格式在设置随机森林搜索空间时有效,所以我很茫然。

import numpy as np
import scipy as sp
import pandas as pd
pd.options.display.max_columns = None
pd.options.display.max_rows = None
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(style="white")
import pyodbc
import statsmodels as sm
from pandasql import sqldf
import math
from tqdm import tqdm
import pickle


from sklearn.preprocessing import RobustScaler, OneHotEncoder, MinMaxScaler
from sklearn.utils import shuffle
from sklearn.cross_validation import KFold, StratifiedKFold, cross_val_score, cross_val_predict, train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold as StratifiedKFoldIt
from sklearn.feature_selection import RFECV, VarianceThreshold, SelectFromModel, SelectKBest
from sklearn.decomposition import PCA, IncrementalPCA, FactorAnalysis
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier, AdaBoostClassifier, BaggingClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV, SGDClassifier
from sklearn.metrics import precision_recall_curve, precision_score, recall_score, accuracy_score, classification_report, confusion_matrix, f1_score, log_loss
from imblearn.over_sampling import RandomOverSampler, SMOTE, ADASYN 
from imblearn.under_sampling import RandomUnderSampler, ClusterCentroids, NearMiss, NeighbourhoodCleaningRule, OneSidedSelection
from xgboost.sklearn import XGBClassifier
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK


space4lr = {
    'C': hp.uniform('C', .0001, 100.0),
    'solver' : hp.choice('solver', [
        {'solver' : 'newton-cg',},
        {'solver' : 'lbfgs',},
        {'solver' : 'sag'},
        {'solver' : 'liblinear', 'penalty' : hp.choice('penalty', [
             {'penalty' : 'l1'},
             {'penalty' : 'l2', 'dual' : hp.choice('dual', [True, False])}]
                                                      )},
    ]),
    'fit_intercept': hp.choice('fit_intercept', ['True', 'False']),
    'class_weight': hp.choice('class_weight', ['balanced', None]),
    'max_iter': 50000,
    'random_state': 84,
    'n_jobs': 8
}
lab = 0
results = pd.DataFrame()
for i in feature_elims:
target = 'Binary_over_3'

alt_targets = ['year2_PER', 'year2_GP' ,'year2_Min', 'year2_EFF' ,'year2_WS/40' ,'year2_Pts/Poss' ,'Round' ,'GRZ_Pick' 
               ,'GRZ_Player_Rating' ,'Binary_over_2', 'Binary_over_3' ,'Binary_over_4' ,'Binary_5' ,'Draft_Strength']
#alt_targets.remove(target)
nondata_columns = ['display_name' ,'player_global_id', 'season' ,'season_' ,'team_global_id', 'birth_date', 'Draft_Day']
nondata_columns.extend(alt_targets)

AGG_SET_CART_PERC = sqldf("""SELECT * FROM AGG_SET_PLAYED_ADJ_SOS_Jan1 t1 
                                 LEFT JOIN RANKINGS t2 ON t1.[player_global_id] = t2.[player_global_id]
                                 LEFT JOIN Phys_Training t3 ON t1.[player_global_id] = t3.[player_global_id]""")
AGG_SET_CART_PERC['HS_RSCI'] = AGG_SET_CART_PERC['HS_RSCI'].fillna(110)
AGG_SET_CART_PERC['HS_Avg_Rank'] = AGG_SET_CART_PERC['HS_Avg_Rank'].fillna(1)
AGG_SET_CART_PERC['HS_years_ranked'] = AGG_SET_CART_PERC['HS_years_ranked'].fillna(0)
AGG_SET_CART_PERC = shuffle(AGG_SET_CART_PERC, random_state=8675309)

rus = RandomUnderSampler(random_state=8675309)
ros = RandomOverSampler(random_state=8675309)
rs = RobustScaler()

X = AGG_SET_CART_PERC
y = X[target]
X = pd.DataFrame(X.drop(nondata_columns, axis=1))
position = pd.get_dummies(X['position'])
for idx, row in position.iterrows():
    if row['F/C'] == 1:
        row['F'] = 1
        row['C'] = 1
    if row['G/F'] == 1:
        row['G'] = 1
        row['F'] = 1
position = position.drop(['F/C', 'G/F'], axis=1)
X = pd.concat([X, position], axis=1).drop(['position'], axis=1)
X = rs.fit_transform(X, y=None)
X = i.transform(X)

def hyperopt_train_test(params):    
    clf = LogisticRegression(**params)
    #cvs = cross_val_score(xgbc, X, y, scoring='recall', cv=skf).mean()
    skf = StratifiedKFold(y, n_folds=6, shuffle=False, random_state=1)
    metrics = []
    tuning_met = []
    accuracy = []
    precision = []
    recall = []
    f1 = []
    log = []
    for i, (train, test) in enumerate(skf):
        X_train = X[train]
        y_train = y[train]
        X_test = X[test]
        y_test = y[test]
        X_train, y_train = ros.fit_sample(X_train, y_train)
        X_train, y_train = rus.fit_sample(X_train, y_train)
        clf.fit(X_train, y_train)
        y_pred = clf.predict(X_test)
        tuning_met.append((((precision_score(y_test, y_pred))*4) + recall_score(y_test, y_pred))/5)
        accuracy.append(accuracy_score(y_test, y_pred))
        precision.append(precision_score(y_test, y_pred))
        recall.append(recall_score(y_test, y_pred))
        f1.append(f1_score(y_test, y_pred))
        log.append(log_loss(y_test, y_pred))
    metrics.append(sum(tuning_met) / len(tuning_met))
    metrics.append(sum(accuracy) / len(accuracy))
    metrics.append(sum(precision) / len(precision))
    metrics.append(sum(recall) / len(recall))
    metrics.append(sum(f1) / len(f1))
    metrics.append(sum(log) / len(log))
    return(metrics)

best = 0
count = 0

def f(params):
    global best, count, results, lab, met
    met = hyperopt_train_test(params.copy())
    met.append(params)
    met.append(featureset_labels[lab])
    acc = met[0]
    results = results.append([met])
    if acc > best:
        print(featureset_labels[lab],'new best:', acc, 'Accuracy:', met[1], 'Precision:', met[2], 'Recall:', met[3], 'using', params, """
        """)
        best = acc
    else:
        print(acc, featureset_labels[lab], count)
    
    count = count + 1
    return {'loss': -acc, 'status': STATUS_OK}
 
trials = Trials()
best = fmin(f, space4lr, algo=tpe.suggest, max_evals=1000, trials=trials)
print(featureset_labels[lab], ' best:')
print(best, """
""")
lab = lab + 1
4

1 回答 1

0

虽然回复太晚了,但昨天我遇到了这个问题。下面提到的代码片段,我想会帮助你。

space = hp.choice('classifier',[
                      {
                       'model': LogisticRegression,
                       'param':
                         {
                             'hyper_param_groups' :hp.choice('hyper_param_groups',
                                             [
                                                {
                                                 'penalty':hp.choice('penalty_block1', ['l2']),
                                                 'solver':hp.choice('solver_block1', ['newton-cg', 'sag', 'saga', 'lbfgs']),
                                                 'multi_class':hp.choice('multi_class', ['ovr', 'multinomial']),
                                                },
                                                {
                                                 'penalty':hp.choice('penalty_block2', ['l2']),
                                                 'solver':hp.choice('solver_block2', ['liblinear']),
                                                 'multi_class':hp.choice('multi_class_block2', ['ovr']),
                                                },
                                                {
                                                 'penalty':hp.choice('penalty_block3', ['l1']),
                                                 'solver':hp.choice('solver_block3', ['saga']),
                                                 'multi_class':hp.choice('multi_class_block3', ['ovr', 'multinomial']),
                                                },
                                             ]),    
                            'dual':hp.choice('dual', [False]),
                            'class_weight':hp.choice('class_weight', ['balanced', None]),
                            'random_state':hp.choice('random_state', [10,267]),
                            'max_iter':hp.choice('max_iter', [100,500]),
                            'verbose':hp.choice('verbose', [0])
                         }
                      }])

以及如何在可调用方法中使用它:

        penalty = args['param']['hyper_param_groups']['penalty']
        solver = args['param']['hyper_param_groups']['solver']
        multi_class = args['param']['hyper_param_groups']['multi_class']
        dual = args['param']['dual']
        class_weight = args['param']['class_weight']
        random_state = args['param']['random_state']
        max_iter = args['param']['max_iter']
        verbose = args['param']['verbose']
于 2019-03-13T08:08:15.857 回答