6

我在一个流域(8000 平方公里)的 12 年内每天都有来自 61 个测量站的降雨量。

目标是创建 5 公里和 25 公里分辨率的网格化每日降雨量产品。由于站点数量很少,即使在雨季也不是所有站点都下雨,所以我选择使用气候变异函数。

典型一天(irain)的雨量计测量值如下,NA 表示的缺失值很少。

7.8  4.4 15.4 19.1  5.8    0   42  6.4   21    21     0     0     0  15.6 0     0    10     5   1.2     0  14.4    NA    25  13.2     0   9.2 2   6.6   7.8  13.2  15.4    NA     9     0  15.5     0  18.6     6 0   4.8  10.6     0    9     0  12.4    NA    12     0     3    14 10    10     0    68  21.8    18  14.8   5.4     7     0    NA

由于每日降雨量存在偏差,为了转换,我分别用立方根变换对数变换 (log1p)每一天进行了测试。然而,在我用 shapiro wilk 测试进行测试时,这两种转换都不适合。因此,我按照Grimes & Pardo(2009) Geostatistical analysis of rains的建议选择了正态分数转换(NCR)。并使用了 Ashton Shortridge 教授的代码

下面的代码用于生成季风季节的气候变异函数。请注意,我使用了超过 30% 的站点报告下雨的日子。没有找到任何参考资料。选择 30%,因为我有大约 65% 的天数可以通过阈值。

lag = 3
bins.vario = seq(0, 75, lag)
nb.bins = length(bins.vario) - 1 

nb.classes = numeric(nb.bins)  
vario.emp = array(0,c(nb.bins,6))
variance.emp = array(NA,c(10000,nb.bins))
vario.emp = as.data.frame(vario.emp)
class(vario.emp) = c("gstatVariogram","data.frame")
names(vario.emp) = c("np","dist","gamma","dir.hor","dir.ver","id")


nRows = nrow(stn.rain.subset)
for (i in 1:nRows) 
{   
  irain = stn.rain.subset[i,]
  isMissing = is.na(irain)
  isZero = (irain == 0)
  irain = irain[!isMissing & !isZero]
  irain = as.numeric(irain)
  rain.mean[[i]] = mean(irain); rain.var[[i]] = var(irain);

  # Testing with log-transformation
  # irain.logtt = log1p(irain)
  # # qqPlot(irain.logtt,distribution = "norm")
  # res = shapiro.test(irain.logtt)
  # pval[[i]] = res$p.value

  if (var(irain)>0)
  {
    # Scaling of the rain on each day. rain in mm. After scaling this is unitless
    irain.scaled = irain/sqrt(var(irain))
    irain.nsc = nscore(irain)
    score  = irain.nsc$nscore   

    easting = lon.UTM[!isMissing & !isZero] # Removing the stn.locs with NA values
    northing = lat.UTM[!isMissing & !isZero]

    rain = data.frame(easting,northing,score)
    names(rain) = c("easting","northing","rain")
    coordinates(rain) = c("easting","northing")  
    proj4string(rain) = UTM

    v = variogram(rain~1, data = rain,boundaries = bins.vario)

    bin.nb = ceiling(v$dist/lag)
    nb.classes[bin.nb] = nb.classes[bin.nb]+1
    vario.emp[bin.nb,] = vario.emp[bin.nb,]+v

}

非零降雨的气候变异函数:

同样,我生成了指标变异函数。

现在的问题是如何使用气候变异函数进行克里金法。

"model" "psill" "range" "kappa" "ang1"  "ang2"  "ang3"  "anis1" "anis2"
"Nug"   0.446609415762287   0   0   0   0   0   1   1
"Sph"   0.533499909345213   51.7206027419321    0.5 0   0   0   1   1

与克里金法类似,每天读取非零,我已经缩放了每天的降雨量并对其进行了转换。不确定以下方法是否正确?

rain = data.frame(easting,northing,score)
# Multiplying the nugget and sill with var(rain) for each day.
clim.vrmod$psill = clim.vrmod$psill * var(irain)
krige.ok = krige(rain[,3]~1,locations =~easting+northing,data = rain,newdata=output.grd,model = clim.vrmod) 
krige.ok$var1.pred.bt = (backtr(krige.ok$var1.pred,irain.nsc, tails='separate'))*sqrt(var(irain))
krige.ok$var1.se = (krige.ok$var1.var)

我的困惑如下:

  1. var1.var 是标准误差(mm)还是方差(mm2)?

  2. 气候变异函数(块金和窗台)是否应该随方差缩放?

  3. 应该使用单独或无选项进行反向转换?

我在这里先向您的帮助表示感谢。

4

1 回答 1

0

AE Journel(数学地质学,大约 1980 年)详细讨论了对数正态变换数据的克里金法与对数正态克里金法。它显示了在克里金法之前使用数据的任何非线性变换的困难。注意期刊改名好几次了,现在是数学地球科学

对于降雨,您还需要考虑数据是否代表一段时间内的累积(一小时、一天、一周等)

如果感兴趣区域的高程变化很大,那么您需要合并数据位置的高程。在文献中至少有两种方法可以做到这一点;(1) 将降雨的平均值建模为函数

于 2020-10-29T22:30:13.633 回答