3

我希望以与 pandas.DataFrame.Merge 类似的方式基于每个帧中的特定列合并两个 Deedle (F#) 帧完美的例子是包含数据列和 (city, state) 列以及包含以下列的信息框架:(city, state);纬度;长。如果我想将 lat long 列添加到我的主框架中,我将合并 (city, state) 列上的两个框架。

这是一个例子:

    let primaryFrame =
            [(0, "Job Name", box "Job 1")
             (0, "City, State", box "Reno, NV")
             (1, "Job Name", box "Job 2")
             (1, "City, State", box "Portland, OR")
             (2, "Job Name", box "Job 3")
             (2, "City, State", box "Portland, OR")
             (3, "Job Name", box "Job 4")
             (3, "City, State", box "Sacramento, CA")] |> Frame.ofValues

    let infoFrame =
            [(0, "City, State", box "Reno, NV")
             (0, "Lat", box "Reno_NV_Lat")
             (0, "Long", box "Reno_NV_Long")
             (1, "City, State", box "Portland, OR")
             (1, "Lat", box "Portland_OR_Lat")
             (1, "Long", box "Portland_OR_Long")] |> Frame.ofValues

    // see code for merge_on below.
    let mergedFrame = primaryFrame
                      |> merge_On infoFrame "City, State" null

这将导致“mergedFrame”看起来像这样:

> mergedFrame.Format();;
val it : string =
  "     Job Name City, State    Lat             Long             
0 -> Job 1    Reno, NV       Reno_NV_Lat     Reno_NV_Long     
1 -> Job 2    Portland, OR   Portland_OR_Lat Portland_OR_Long 
2 -> Job 3    Portland, OR   Portland_OR_Lat Portland_OR_Long 
3 -> Job 4    Sacramento, CA <missing>       <missing>   

我想出了一种方法(上面示例中使用的 'merge_on' 函数),但作为一个不熟悉 F# 的销售工程师,我想有一种更惯用/更有效的方法来做到这一点。以下是我执行此操作的函数以及“removeDuplicateRows”,它可以满足您的期望并且是“merge_on”函数所需要的;如果您也想评论更好的方法,请这样做。

    let removeDuplicateRows column (frame : Frame<'a, 'b>) =
             let nonDupKeys = frame.GroupRowsBy(column).RowKeys
                              |> Seq.distinctBy (fun (a, b) -> a) 
                              |> Seq.map (fun (a, b) -> b)  
             frame.Rows.[nonDupKeys]


    let merge_On (infoFrame : Frame<'c, 'b>) mergeOnCol missingReplacement 
                  (primaryFrame : Frame<'a,'b>) =
          let frame = primaryFrame.Clone() 
          let infoFrame =  infoFrame                           
                           |> removeDuplicateRows mergeOnCol 
                           |> Frame.indexRows mergeOnCol
          let initialSeries = frame.GetColumn(mergeOnCol)
          let infoFrameRows = infoFrame.RowKeys
          for colKey in infoFrame.ColumnKeys do
              let newSeries =
                  [for v in initialSeries.ValuesAll do
                        if Seq.contains v infoFrameRows then  
                            let key = infoFrame.GetRow(v)
                            yield key.[colKey]
                        else
                            yield box missingReplacement ]
              frame.AddColumn(colKey, newSeries)
          frame

谢谢你的帮助!

更新:

将 Frame.indexRowsString 切换为 Frame.indexRows 以处理“mergOnCol”中的类型不是字符串的情况。

按照 Tomas 的建议摆脱 infoFrame.Clone()

4

1 回答 1

1

Deedle 连接帧的方式(仅在行/列键中)可悲地意味着它没有一个很好的内置函数来在非键列上连接帧。

据我所知,您的方法对我来说非常好。您不需要CloneinfoFrame因为您没有改变框架),我认为您可以替换infoFrame.GetRowinfoFrame.TryGetRow(然后您不需要提前获取密钥),但除此之外,您的代码看起来不错!

我想出了一种替代方法,而且方法更短,如下所示:

// Index the info frame by city/state, so that we can do lookup
let infoByCity = infoFrame |> Frame.indexRowsString "City, State"

// Create a new frame with the same row indices as 'primaryFrame' 
// containing the additional information from infoFrame.
let infoMatched = 
  primaryFrame.Rows
  |> Series.map (fun k row -> 
      // For every row, we get the "City, State" value of the row and then
      // find the corresponding row with additional information in infoFrame. Using 
      // 'ValueOrDefault' will automatically give missing when the key does not exist
      infoByCity.Rows.TryGet(row.GetAs<string>("City, State")).ValueOrDefault)
  // Now turn the series of rows into a frame
  |> Frame.ofRows

// Now we have two frames with matching keys, so we can join!
primaryFrame.Join(infoMatched)

这有点短,也许更不言自明,但我没有做任何测试来检查哪个更快。除非性能是首要考虑因素,否则我认为使用更具可读性的版本是一个不错的默认选择!

于 2017-05-05T17:47:09.240 回答