我似乎一直搞砸并迷失在如何重塑数据以适应模型。我认为输入和输出数据的形状必须匹配,但我一直迷失在如何去做这件事上。
我认为我的主要问题是灰度图像和 RGB 图像的存储方式不同。[1] 与 [255,255,255]
因此,如果:
屏幕 = cv2.cvtColor(屏幕,cv2.COLOR_BGR2RGB)
改为:
屏幕= cv2.cvtColor(屏幕,cv2.COLOR_BGR2GRAY)
一切正常。
有问题的代码:
# Capture Data (CUT SHORT)
WIDTH = 160
HEIGHT = 120
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
screen = cv2.resize(screen, (WIDTH, HEIGHT))
dataset = []
output = [0, 0, 0, 0]
dataset.append([screen, output])
np.save("training.npy", dataset)
# Build Model
https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
# Changed to match output.
network = fully_connected(network, 4, activation='softmax')
# Train Data
WIDTH = 160
HEIGHT = 120
LR = 1e-3
EPOCHS = 5
MODEL_NAME = "HELP"
model = alexnet(WIDTH, HEIGHT, LR)
for i in range(EPOCHS):
train_data = np.load("training.npy".format(i))
train = train_data[:-100]
test = train_data[-100:]
X = np.array([i[0] for i in train]).reshape(-1,WIDTH,HEIGHT,1)
Y = [i[1] for i in train]
test_x = np.array([i[0] for i in test]).reshape(-1,WIDTH,HEIGHT,1)
test_y = [i[1] for i in test]
model.fit({'input': X}, {'targets': Y}, n_epoch=1, validation_set=({'input': test_x}, {'targets': test_y}),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)
model.save(MODEL_NAME)
错误:线程 Thread-3 中的异常:回溯(最后一次调用):文件“C:\Users\TF\AppData\Local\Programs\Python\Python35\lib\threading.py”,第 914 行,在 _bootstrap_inner self. run() 文件“C:\Users\TF\AppData\Local\Programs\Python\Python35\lib\threading.py”,第 862 行,在运行 self._target(*self._args, **self._kwargs) 文件中“C:\Users\TF\AppData\Local\Programs\Python\Python35\lib\site-packages\tflearn\data_flow.py”,第 187 行,在 fill_feed_dict_queue 数据 = self.retrieve_data(batch_ids) 文件“C:\Users \TF\AppData\Local\Programs\Python\Python35\lib\site-packages\tflearn\data_flow.py”,第 222 行,retrieve_data utils.slice_array(self.feed_dict[key], batch_ids) 文件“C:\Users \TF\AppData\Local\Programs\Python\Python35\lib\site-packages\tflearn\utils.py”,第 187 行,在 slice_array 返回 X[开始]
IndexError:索引 2936 超出轴 0 的范围,大小为 1900