我正在创建一个神经网络来玩井字游戏。我正在将 tflearn 用于神经网络。这是我正在使用的训练数据
[[[1, 1, 1, 0, -1, -1, -1, 0, 0], 6], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 3], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 5],
[[1, 1, 1, 0, -1, -1, -1, 0, 0], 2], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 7], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 1],
[[0, 0, 1, -1, 1, 0, 1, -1, -1], 4], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 3], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 8],
[[0, 0, 1, -1, 1, 0, 1, -1, -1], 5], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 9], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 7],
[[0, -1, 1, 0, 1, 0, 1, -1, -1], 9], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 3], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 2],
[[0, -1, 1, 0, 1, 0, 1, -1, -1], 5], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 8], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 7],
[[1, -1, -1, 0, 1, 0, -1, 0, 1], 2], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 1], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 3],
[[1, -1, -1, 0, 1, 0, -1, 0, 1], 5], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 7], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 9],
[[-1, 1, -1, 0, 1, 0, -1, 1, 0], 1], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 5], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 3],
[[-1, 1, -1, 0, 1, 0, -1, 1, 0], 2], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 7], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 8]]
它包含当前棋盘状态、9 个号码的列表和棋子 1 号码的位置。我将电路板和位置分离到数据和标签中。当我将数据输入神经网络时,出现此错误
ValueError:无法为张量 u'input/X:0' 提供形状 (30, 9) 的值,其形状为 '(?, 30, 9)'
这是我用来创建和训练模型的代码
def create_model():
network = input_data(shape=(None, 30, 9), name='input')
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 9, activation='linear')
network = regression(network, optimizer='adam', learning_rate=0.01, loss='mean_square', name='targets')
model = tflearn.DNN(network, tensorboard_dir='log')
return model
def train_model():
training_data = [[[1, 1, 1, 0, -1, -1, -1, 0, 0], 6], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 3], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 5],
[[1, 1, 1, 0, -1, -1, -1, 0, 0], 2], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 7], [[1, 1, 1, 0, -1, -1, -1, 0, 0], 1],
[[0, 0, 1, -1, 1, 0, 1, -1, -1], 4], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 3], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 8],
[[0, 0, 1, -1, 1, 0, 1, -1, -1], 5], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 9], [[0, 0, 1, -1, 1, 0, 1, -1, -1], 7],
[[0, -1, 1, 0, 1, 0, 1, -1, -1], 9], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 3], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 2],
[[0, -1, 1, 0, 1, 0, 1, -1, -1], 5], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 8], [[0, -1, 1, 0, 1, 0, 1, -1, -1], 7],
[[1, -1, -1, 0, 1, 0, -1, 0, 1], 2], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 1], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 3],
[[1, -1, -1, 0, 1, 0, -1, 0, 1], 5], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 7], [[1, -1, -1, 0, 1, 0, -1, 0, 1], 9],
[[-1, 1, -1, 0, 1, 0, -1, 1, 0], 1], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 5], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 3],
[[-1, 1, -1, 0, 1, 0, -1, 1, 0], 2], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 7], [[-1, 1, -1, 0, 1, 0, -1, 1, 0], 8]]
x = []
y = []
for i in training_data:
x.append(i[0])
y.append(i[1])
model = create_model()
model.fit({'input': x}, {'targets': y}, n_epoch=10, snapshot_step=500, show_metric=True, run_id='openai_learning')