0

我有一个如下所示的数据集:

date,value1,value2
2016-01-01 00:00:00,3,0
2016-01-01 01:00:00,0,0
2016-01-01 02:00:00,0,0
2016-01-01 03:00:00,0,0
2016-01-01 04:00:00,0,0
2016-01-01 05:00:00,0,0
2016-01-01 06:00:00,0,0
2016-01-01 07:00:00,0,2
2016-01-01 08:00:00,3,11
2016-01-01 09:00:00,14,14
2016-01-01 10:00:00,12,13
2016-01-01 11:00:00,11,13
2016-01-01 12:00:00,11,9
2016-01-01 13:00:00,17,21
2016-01-01 14:00:00,9,22
2016-01-01 15:00:00,10,9
2016-01-01 16:00:00,11,9
2016-01-01 17:00:00,8,8
2016-01-01 18:00:00,4,2
2016-01-01 19:00:00,5,7
2016-01-01 20:00:00,5,5
2016-01-01 21:00:00,3,4
2016-01-01 22:00:00,2,4
2016-01-01 23:00:00,2,4
2016-01-02 00:00:00,0,0
2016-01-02 01:00:00,0,0
2016-01-02 02:00:00,0,0
2016-01-02 03:00:00,0,0
2016-01-02 04:00:00,0,0
2016-01-02 05:00:00,0,0
2016-01-02 06:00:00,1,0
2016-01-02 07:00:00,0,0
2016-01-02 08:00:00,0,0
2016-01-02 09:00:00,0,0
2016-01-02 10:00:00,0,0
2016-01-02 11:00:00,0,0
2016-01-02 12:00:00,0,0
2016-01-02 13:00:00,1,0
2016-01-02 14:00:00,0,0
2016-01-02 15:00:00,0,0
2016-01-02 16:00:00,0,0
2016-01-02 17:00:00,0,0
2016-01-02 18:00:00,0,0
2016-01-02 19:00:00,0,0
2016-01-02 20:00:00,1,0
2016-01-02 21:00:00,0,0
2016-01-02 22:00:00,0,0
2016-01-02 23:00:00,0,0

我想做的是每天计算 value1 和 value2 之间的 rmse。所以基本上,我想运行该函数 31 次(每天一次),输入将是我尝试使用的一天中的 24 个条目(每小时一个)

rmse(df.groupby([df.index.day]).mean().value1, 
    df.groupby([df.index.day]).mean().value2)

但它给了我一个值,我想要的是一个包含每天 rmse 的列表,例如

daily_rmse = [rmse01_01, rmse01_02, ..., rmse01_31]
4

2 回答 2

1

使用sklearn_mean_squared_error

from sklearn.metrics import mean_squared_error

df.groupby(df.date.dt.date).apply(
    lambda x: mean_squared_error(x.value1, x.value2) ** .5)

date
2016-01-01    3.494043
2016-01-02    0.377964
dtype: float64
于 2017-04-19T19:49:04.527 回答
1

你不需要继续重做groupby,你需要计算rmse它的每个元素,而不是手段序列:

gb = df.groupby(df.index.date)
mean_by_day = gb.mean()
rmse_by_day = gb.std(ddof=0)

我怀疑您正在应用的 RMSE 公式完全等同于由元素数量标准化的标准偏差(不是元素数量 - 1,这是 Pandas 中的默认值)。

您现在应该能够访问mean_by_day.value1std_by_day.value1获取所需的值。

我得到的价值mean_by_day

              value1    value2
2016-01-01  5.416667  6.541667
2016-01-02  0.125000  0.000000

同样,因为rmse_by_day我得到

              value1    value2
2016-01-01  5.139039  6.422481
2016-01-02  0.330719  0.000000

请注意,date使用索引的字段而不是day,如果您的数据持续多个月,则可能会重复该字段。

于 2017-04-19T18:50:31.367 回答