我正在尝试使用 Python 库lmfit拟合数据。在数据中,有两个高斯函数,第二个(LO)高于第一个(TO)。代码如下:
TOmod = GaussianModel(prefix="TO_")
LOmod = GaussianModel(prefix="LO_")
TOmod.set_param_hint('TO_center', min = 265, max = 270)
TOmod.set_param_hint('TO_amplitude', min = 3e3, max = 7e3)
TOmod.set_param_hint('TO_sigma', min = 0.1, max = 5)
LOmod.set_param_hint('LO_center', min = 280, max = 310)
LOmod.set_param_hint('LO_amplitude', min = 2e4, max = 4e4)
LOmod.set_param_hint('LO_sigma', min = 0.1, max = 8)
pars = TOmod.guess(y, x=x)
pars += LOmod.guess(y, x=x)
mod = TOmod + LOmod
out = mod.fit(y, pars, x=x)
print(out.fit_report())
plt.figure("Fitting")
plt.plot(x, y, "bo")
plt.plot(x, out.init_fit, 'k--')
plt.plot(x, out.best_fit, 'r-')
plt.xlabel(r"k [cm$^{-1}$]")
plt.ylabel(r"Intensity")
plt.xlim(250,325)
plt.ylim(-1e3,3e4)
plt.show("Fitting")
我可以制作这个图表:
lmfit还生成以下报告:
[[Model]]
(Model(gaussian, prefix='TO_') + Model(gaussian, prefix='LO_'))
[[Fit Statistics]]
# function evals = 30
# data points = 576
# variables = 6
chi-square = 2534929941.545
reduced chi-square = 4447245.511
Akaike info crit = 8823.259
Bayesian info crit = 8849.395
[[Variables]]
TO_sigma: 0.14748432 +/- 0 (0.00%) (init= 0.1)
TO_center: 270 +/- 0 (0.00%) (init= 270)
TO_amplitude: 3000 +/- 0 (0.00%) (init= 3000)
TO_fwhm: 0.34729903 +/- 0 (0.00%) == '2.3548200*TO_sigma'
TO_height: 8114.94309 +/- 0 (0.00%) == '0.3989423*TO_amplitude/max(1.e-15, TO_sigma)'
LO_sigma: 0.25064604 +/- 0 (0.00%) (init= 0.1)
LO_center: 292.364593 +/- 0 (0.00%) (init= 292.3646)
LO_amplitude: 24876.9938 +/- 0 (0.00%) (init= 20000)
LO_fwhm: 0.59022631 +/- 0 (0.00%) == '2.3548200*LO_sigma'
LO_height: 39595.6185 +/- 0 (0.00%) == '0.3989423*LO_amplitude/max(1.e-15, LO_sigma)'
[[Correlations]] (unreported correlations are < 0.100)
起初,最终和初始 LO_amplitudes 与报告中的不对应(您可以看到,初始值为 2e4,但在图中至少为 5e4)。怎么来的?
其次,我期待合身会更好,而所有界限都已设定。
编辑 1 - 添加数据
我已经发布了完整的脚本,只有缺少的是加载数据:
x, y = np.genfromtxt("data.txt", unpack=True)
以下是数据:
3.235230000000000246e+02 8.074899999999997817e+02
3.217950000000000159e+02 7.387500000000000000e+02
3.200659999999999741e+02 8.103400000000001455e+02
3.183369999999999891e+02 9.050399999999999636e+02
3.166080000000000041e+02 1.176100000000000364e+03
3.148790000000000191e+02 1.483189999999999600e+03
3.131490000000000009e+02 1.729449999999999818e+03
3.114189999999999827e+02 2.281949999999999818e+03
3.096890000000000214e+02 2.486050000000000182e+03
3.079580000000000268e+02 2.867739999999999782e+03
3.062269999999999754e+02 3.205949999999999818e+03
3.044950000000000045e+02 4.065239999999999782e+03
3.027629999999999768e+02 5.081539999999999964e+03
3.010310000000000059e+02 6.767100000000000364e+03
2.992989999999999782e+02 9.268700000000000728e+03
2.975659999999999741e+02 1.334320000000000073e+04
2.958319999999999936e+02 1.946429999999999927e+04
2.940989999999999895e+02 2.552240000000000146e+04
2.923650000000000091e+02 2.720209999999999854e+04
2.906309999999999718e+02 2.314690000000000146e+04
2.888960000000000150e+02 1.642840000000000146e+04
2.871610000000000014e+02 1.048929999999999927e+04
2.854259999999999877e+02 6.923909999999999854e+03
2.836899999999999977e+02 4.836300000000000182e+03
2.819540000000000077e+02 3.501239999999999782e+03
2.802169999999999845e+02 2.686470000000000255e+03
2.784809999999999945e+02 2.227590000000000146e+03
2.767440000000000282e+02 1.781840000000000146e+03
2.750059999999999718e+02 1.582319999999999709e+03
2.732679999999999723e+02 1.520989999999999782e+03
2.715299999999999727e+02 2.011989999999999782e+03
2.697919999999999732e+02 3.021930000000000291e+03
2.680529999999999973e+02 4.754640000000000327e+03
2.663140000000000214e+02 5.088010000000000218e+03
2.645740000000000123e+02 3.515579999999999927e+03
2.628340000000000032e+02 2.159310000000000400e+03
2.610939999999999941e+02 1.190029999999999745e+03
2.593530000000000086e+02 7.985300000000002001e+02
2.576120000000000232e+02 5.780700000000001637e+02
2.558710000000000093e+02 4.897800000000002001e+02
2.541289999999999907e+02 3.914800000000000182e+02
2.523870000000000005e+02 3.046999999999998181e+02
2.506450000000000102e+02 3.270000000000000000e+02