0

我正在尝试为家庭数据实现 EM 算法,我假设我的观察结果具有多元 t 分布。我每个家庭只有两个兄弟姐妹,所以所有家庭​​组只有两个观察结果。基本上我正在尝试遵循本文中的 E(C)M 步骤: https ://pdfs.semanticscholar.org/9445/ef865c4eb1431f9cb2abdb5efc1c361172cc.pdf

但是,现在我不确定 EM 是否适用于此类数据,因为我的相关矩阵 Psi 对于家庭来说应该是块对角线。

所以这是一个关于我的家庭结构的 R 示例

fam_id = sort(rep(1:5, 2))

Z= matrix(0, nrow = length(fam_id), ncol = length(unique(fam_id)))
colnames(Z) = unique(fam_id)

k = 1
i = 1
# Random effects dummy matrix
while (k <= ncol(Z)) {
    Z[i:(i+1), k] = c(1, 1)
    k = k +1
    i = i+2
}

> Z
  1 2 3 4 5
[1,] 1 0 0 0 0
[2,] 1 0 0 0 0
[3,] 0 1 0 0 0
[4,] 0 1 0 0 0
...

EM 算法在第 5 次迭代后阻塞,表示相关矩阵 Psi 不是:

solve.default(psi_hat) 中的错误:系统在计算上是奇异的

如果有人能对此有所了解,我会非常高兴!

4

1 回答 1

1

请在 Statschange 网站上查看此答案

https://stats.stackexchange.com/questions/76488/error-system-is-computationally-singular-when-running-a-glm

您可能在第 5 次迭代中得到一个不可逆矩阵

于 2017-04-12T11:15:51.863 回答