函数export_savedmodel需要参数 serving_input_receiver_fn,这是一个没有参数的函数,它定义了模型和预测器的输入。因此,您必须创建自己的serving_input_receiver_fn,其中模型输入类型与训练脚本中的模型输入匹配,预测器输入类型与测试脚本中的预测器输入匹配。另一方面,如果您创建自定义模型,则必须定义由函数tf.estimator.export.PredictOutput定义的 export_outputs ,该输入是定义必须与预测器输出名称匹配的名称的字典在测试脚本中。
例如:
培训脚本
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_tensors')
receiver_tensors = {"predictor_inputs": serialized_tf_example}
feature_spec = {"words": tf.FixedLenFeature([25],tf.int64)}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
def estimator_spec_for_softmax_classification(logits, labels, mode):
predicted_classes = tf.argmax(logits, 1)
if (mode == tf.estimator.ModeKeys.PREDICT):
export_outputs = {'predict_output': tf.estimator.export.PredictOutput({"pred_output_classes": predicted_classes, 'probabilities': tf.nn.softmax(logits)})}
return tf.estimator.EstimatorSpec(mode=mode, predictions={'class': predicted_classes, 'prob': tf.nn.softmax(logits)}, export_outputs=export_outputs) # IMPORTANT!!!
onehot_labels = tf.one_hot(labels, 31, 1, 0)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels, logits=logits)
if (mode == tf.estimator.ModeKeys.TRAIN):
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
eval_metric_ops = {'accuracy': tf.metrics.accuracy(labels=labels, predictions=predicted_classes)}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def model_custom(features, labels, mode):
bow_column = tf.feature_column.categorical_column_with_identity("words", num_buckets=1000)
bow_embedding_column = tf.feature_column.embedding_column(bow_column, dimension=50)
bow = tf.feature_column.input_layer(features, feature_columns=[bow_embedding_column])
logits = tf.layers.dense(bow, 31, activation=None)
return estimator_spec_for_softmax_classification(logits=logits, labels=labels, mode=mode)
def main():
# ...
# preprocess-> features_train_set and labels_train_set
# ...
classifier = tf.estimator.Estimator(model_fn = model_custom)
train_input_fn = tf.estimator.inputs.numpy_input_fn(x={"words": features_train_set}, y=labels_train_set, batch_size=batch_size_param, num_epochs=None, shuffle=True)
classifier.train(input_fn=train_input_fn, steps=100)
full_model_dir = classifier.export_savedmodel(export_dir_base="C:/models/directory_base", serving_input_receiver_fn=serving_input_receiver_fn)
测试脚本
def main():
# ...
# preprocess-> features_test_set
# ...
with tf.Session() as sess:
tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], full_model_dir)
predictor = tf.contrib.predictor.from_saved_model(full_model_dir)
model_input = tf.train.Example(features=tf.train.Features( feature={"words": tf.train.Feature(int64_list=tf.train.Int64List(value=features_test_set)) }))
model_input = model_input.SerializeToString()
output_dict = predictor({"predictor_inputs":[model_input]})
y_predicted = output_dict["pred_output_classes"][0]
(在 Python 3.6.3、Tensorflow 1.4.0 中测试的代码)