1

我正在尝试使用 Kafka 和 Python 构建结构化流。要求:我需要在 Spark 中处理来自 Kafka(JSON 格式)的流数据(执行转换),然后将其存储在数据库中。

我有 JSON 格式的数据,例如, {"a": 120.56, "b": 143.6865998138807, "name": "niks", "time": "2012-12-01 00:00:09"}

我打算spark.readStream用于阅读 Kafka 之类的内容,

data = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("subscribe","test").load()

我参考了这个链接以供参考,但没有得到如何解析 JSON 数据。我试过这个,

data = data.selectExpr("CAST(a AS FLOAT)","CAST(b as FLOAT)", "CAST(name as STRING)", "CAST(time as STRING)").as[(Float, Float, String, String)]

但看起来它不起作用。

任何使用 Python 处理 Spark 结构化流的人都可以指导我继续使用示例示例或链接吗?

使用,

schema = StructType([
    StructField("a", DoubleType()),
    StructField("b", DoubleType()),
    StructField("name", StringType()),
    StructField("time", TimestampType())])

inData = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("subscribe","test").load()
data = inData.select(from_json(col("value").cast("string"), schema))
query = data.writeStream.outputMode("Append").format("console").start()

程序运行,但我在控制台上得到值,

+-----------------------------------+
|jsontostruct(CAST(value AS STRING))|
+-----------------------------------+
|               [null,null,null,2...|
|               [null,null,null,2...|
+-----------------------------------+

17/04/07 19:23:15 INFO StreamExecution: Streaming query made progress: {
  "id" : "8e2355cb-0fd3-4233-89d8-34a855256b1e",
  "runId" : "9fc462e0-385a-4b05-97ed-8093dc6ef37b",
  "name" : null,
  "timestamp" : "2017-04-07T19:23:15.013Z",
  "numInputRows" : 2,
  "inputRowsPerSecond" : 125.0,
  "processedRowsPerSecond" : 12.269938650306749,
  "durationMs" : {
    "addBatch" : 112,
    "getBatch" : 8,
    "getOffset" : 2,
    "queryPlanning" : 4,
    "triggerExecution" : 163,
    "walCommit" : 26
  },
  "eventTime" : {
    "watermark" : "1970-01-01T00:00:00.000Z"
  },
  "stateOperators" : [ ],
  "sources" : [ {
    "description" : "KafkaSource[Subscribe[test]]",
    "startOffset" : {
      "test" : {
        "0" : 366
      }
    },
    "endOffset" : {
      "test" : {
        "0" : 368
      }
    },
    "numInputRows" : 2,
    "inputRowsPerSecond" : 125.0,
    "processedRowsPerSecond" : 12.269938650306749
  } ],
  "sink" : {
    "description" : "org.apache.spark.sql.execution.streaming.ConsoleSink@6aa91aa2"
  }
}

我在这里错过了什么吗。

4

1 回答 1

1

您可以使用from_json架构:

from pyspark.sql.functions import col, from_json
from pyspark.sql.types import *

schema = StructType([
    StructField("a", DoubleType()),
    StructField("b", DoubleType()), 
    StructField("name", StringType()), 
    StructField("time", TimestampType())])

data.select(from_json(col("value").cast("string"), schema))

或将单个字段作为字符串获取get_json_object

from pyspark.sql.functions import get_json_object

data.select([
    get_json_object(col("value").cast("string"), "$.{}".format(c)).alias(c)
    for c in ["a", "b", "name", "time"]])

cast稍后根据您的需要进行调整。

于 2017-04-07T18:34:20.320 回答