我正在尝试使用 TFLearn(或直接使用 TensorFlow)来重建嘈杂的(如谐波)信号。我的输入有 168 列要转换为 84 个输出。我想将每一列对视为一个像素。我不必实时运行,所以我想使用多行输入来生成单个输出。我想我需要至少 20 行输入(两边各 10 行)来计算单行输出。如何适当地重塑我的数据?例如看评论:
def learn1(data, answers):
# data.shape == 5000x168, answers.shape = 5003x84
network = tflearn.input_data(shape=[None, 20, 84, 2])
... set up 2D convolutional network ...
model = tflearn.DNN(network)
X = # data reshaped into overlapping groups of 20 -- what goes here?
Y = # I don't have any labels. What goes here?
Y_test = # what goes here?
model.fit(X, Y, n_epoch=50, shuffle=False,
validation_set=(answers, Y_test), batch_size=10)
我可以随意生成测试数据。谢谢你的帮助。