下面是我在训练网络中的最后一层:
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "final"
bottom: "label"
top: "loss"
loss_param {
ignore_label: 255
normalization: VALID
}
}
注意我采用了 softmax_loss 层。由于它的计算形式是这样的:-log(概率),所以很奇怪损失可以是负数,如下所示(迭代 80)。
I0404 23:32:49.400624 6903 solver.cpp:228] Iteration 79, loss = 0.167006
I0404 23:32:49.400806 6903 solver.cpp:244] Train net output #0: loss = 0.167008 (* 1 = 0.167008 loss)
I0404 23:32:49.400825 6903 sgd_solver.cpp:106] Iteration 79, lr = 0.0001
I0404 23:33:25.660655 6903 solver.cpp:228] Iteration 80, loss = -1.54972e-06
I0404 23:33:25.660845 6903 solver.cpp:244] Train net output #0: loss = 0 (* 1 = 0 loss)
I0404 23:33:25.660862 6903 sgd_solver.cpp:106] Iteration 80, lr = 0.0001
I0404 23:34:00.451464 6903 solver.cpp:228] Iteration 81, loss = 1.89034
I0404 23:34:00.451661 6903 solver.cpp:244] Train net output #0: loss = 1.89034 (* 1 = 1.89034 loss)
谁能为我解释一下?这怎么会发生?非常感谢!
PS:我这里做的任务是语义分割。总共有 20 个对象类加上背景(所以 21 个类)。标签范围为 0-21。额外的标签 225 被忽略,可以在本文开头的 SoftmaxWithLoss 定义中找到。