我有这样结构的xml文件:
<?xml version="1.0"?>
<catalog>
<new>
<book id="bk101" language="en">
<author id="4452" primary="true">Gambardella, Matthew</author>
<title primary="true">XML Developer's Guide</title>
<genre primary="false">Computer</genre>
<publisher primary="true" id="US124">
<firm id="4124">Amazon LLC</firm>
<address>NY, USA</address>
<email type="official">books@amazon.com</email>
<contact_person id="3351">
<name>Rajesh K.</name>
<email type="personal">rajesh@amazon.com</email>
</contact_person>
</publisher>
</book>
<book id="bk103" language="en">
<author id="4452" primary="true">Corets, Eva</author>
<title primary="true">Maeve Ascendant</title>
<genre primary="false">Fantasy</genre>
<publisher primary="true" id="US136">
<firm id="4524">Oreally LLC</firm>
<address>NY, USA</address>
<email type="official">books@oreally.com</email>
<contact_person id="1573">
<name>Prajakta G.</name>
<email type="personal">prajakta@oreally.com</email>
</contact_person>
</publisher>
</book>
</new>
<removed>
<book id="bk104" language="en">
<author id="4452" primary="true">Corets, Eva</author>
<title primary="true">Oberon's Legacy</title>
<genre primary="false">Fantasy</genre>
<publisher primary="true" id="US137">
<firm id="4524">Oreally LLC</firm>
<address>NY, USA</address>
<email type="official">books@oreally.com</email>
<contact_person id="1573">
<name>Prajakta G.</name>
<email type="personal">prajakta@oreally.com</email>
</contact_person>
</publisher>
</book>
</removed>
</catalog>
我怎样才能将它加载到数据集中?我尝试按照Databricks 中的示例进行操作,但收到错误消息:AnalysysException: Reference '_id' is ambiguous, could be: _id#1, _id#3
我已将 StructType 架构中的 StructField '_id' 替换为 '_id#1'、'_id#2' 等等,
但我收到另一个错误:
Exception in thread "main" java.lang.ExceptionInInitializerError
at org.apache.spark.SparkContext.withScope(SparkContext.scala:701)
at org.apache.spark.SparkContext.newAPIHadoopFile(SparkContext.scala:1094)
at com.databricks.spark.xml.util.XmlFile$.withCharset(XmlFile.scala:46)
at com.databricks.spark.xml.DefaultSource$$anonfun$createRelation$1.apply(DefaultSource.scala:62)
at com.databricks.spark.xml.DefaultSource$$anonfun$createRelation$1.apply(DefaultSource.scala:62)
at com.databricks.spark.xml.XmlRelation.buildScan(XmlRelation.scala:54)
at com.databricks.spark.xml.XmlRelation.buildScan(XmlRelation.scala:63)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$12.apply(DataSourceStrategy.scala:343)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$12.apply(DataSourceStrategy.scala:343)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$pruneFilterProject$1.apply(DataSourceStrategy.scala:384)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$pruneFilterProject$1.apply(DataSourceStrategy.scala:383)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$.pruneFilterProjectRaw(DataSourceStrategy.scala:464)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$.pruneFilterProject(DataSourceStrategy.scala:379)
at org.apache.spark.sql.execution.datasources.DataSourceStrategy$.apply(DataSourceStrategy.scala:339)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:74)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:66)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:79)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:75)
at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:84)
at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:84)
at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2791)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
at org.apache.spark.sql.Dataset.show(Dataset.scala:636)
at org.apache.spark.sql.Dataset.show(Dataset.scala:595)