3

这个问题已经问过两次了。

在 2012 年,给定一天中的时间、纬度和经度的太阳位置,Josh O'Brien 给出了函数 sunPosition 的新版本:

sunPosition <- function(year, month, day, hour=12, min=0, sec=0,
                lat=46.5, long=6.5) {

twopi <- 2 * pi
deg2rad <- pi / 180

# Get day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years
month.days <- c(0,31,28,31,30,31,30,31,31,30,31,30)
day <- day + cumsum(month.days)[month]
leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) & 
            day >= 60 & !(month==2 & day==60)
day[leapdays] <- day[leapdays] + 1

# Get Julian date - 2400000
hour <- hour + min / 60 + sec / 3600 # hour plus fraction
delta <- year - 1949
leap <- trunc(delta / 4) # former leapyears
jd <- 32916.5 + delta * 365 + leap + day + hour / 24

# The input to the Atronomer's almanach is the difference between
# the Julian date and JD 2451545.0 (noon, 1 January 2000)
time <- jd - 51545.

# Ecliptic coordinates

# Mean longitude
mnlong <- 280.460 + .9856474 * time
mnlong <- mnlong %% 360
mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360

# Mean anomaly
mnanom <- 357.528 + .9856003 * time
mnanom <- mnanom %% 360
mnanom[mnanom < 0] <- mnanom[mnanom < 0] + 360
mnanom <- mnanom * deg2rad

# Ecliptic longitude and obliquity of ecliptic
eclong <- mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom)
eclong <- eclong %% 360
eclong[eclong < 0] <- eclong[eclong < 0] + 360
oblqec <- 23.439 - 0.0000004 * time
eclong <- eclong * deg2rad
oblqec <- oblqec * deg2rad

# Celestial coordinates
# Right ascension and declination
num <- cos(oblqec) * sin(eclong)
den <- cos(eclong)
ra <- atan(num / den)
ra[den < 0] <- ra[den < 0] + pi
ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + twopi
dec <- asin(sin(oblqec) * sin(eclong))

# Local coordinates
# Greenwich mean sidereal time
gmst <- 6.697375 + .0657098242 * time + hour
gmst <- gmst %% 24
gmst[gmst < 0] <- gmst[gmst < 0] + 24.

# Local mean sidereal time
lmst <- gmst + long / 15.
lmst <- lmst %% 24.
lmst[lmst < 0] <- lmst[lmst < 0] + 24.
lmst <- lmst * 15. * deg2rad

# Hour angle
ha <- lmst - ra
ha[ha < -pi] <- ha[ha < -pi] + twopi
ha[ha > pi] <- ha[ha > pi] - twopi

# Latitude to radians
lat <- lat * deg2rad

# Azimuth and elevation
el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
az <- asin(-cos(dec) * sin(ha) / cos(el))

# For logic and names, see Spencer, J.W. 1989. Solar Energy. 42(4):353
cosAzPos <- (0 <= sin(dec) - sin(el) * sin(lat))
sinAzNeg <- (sin(az) < 0)
az[cosAzPos & sinAzNeg] <- az[cosAzPos & sinAzNeg] + twopi
az[!cosAzPos] <- pi - az[!cosAzPos]

# if (0 < sin(dec) - sin(el) * sin(lat)) {
#     if(sin(az) < 0) az <- az + twopi
# } else {
#     az <- pi - az
# }


el <- el / deg2rad
az <- az / deg2rad
lat <- lat / deg2rad

return(list(elevation=el, azimuth=az))
}

我想计算太平洋西南部新喀里多尼亚周围的太阳位置,因此我输入了例如这些值:

sunPosition(2017,03,16,12,0,0,-21,164)
$elevation
[1] -61.29637

$azimuth
[1] 220.4036

但是从我的角度来看,有一个问题,这个时候海拔一定是正的。甚至通过与计算出 70.70 度高度的 Suncalc 网站结果进行比较。

那么,您能否向我确认,在函数中我必须以度数输入纬度和经度,并以当地时间输入日期和小时?我哪里错了?还是代码有错误?

4

0 回答 0