我有四组随机正态分布数。均值用于绘制条形图,每组的 95% 置信区间用误差线绘制。
给定一个值 y,四种不同的颜色将被设置到与 y 所在的四个范围相对应的条形: 1. 平均值的下限;2. 平均到上限;3.低于更低;4. 鞋面以上。
我想使用滑块来控制 y 值并在每次滑动时更新条形颜色,我尝试使用以下代码,但无法在每次更新时绘制条形图。
有人可以给我一些想法吗?
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import scipy.stats as st
from matplotlib.widgets import Slider
np.random.seed(12345)
df = pd.DataFrame([np.random.normal(33500,150000,3650),
np.random.normal(41000,90000,3650),
np.random.normal(41000,120000,3650),
np.random.normal(48000,55000,3650)],
index=[1992,1993,1994,1995])
N = len(df.columns)-1 # Degree of Freedom
avg = df.mean(axis=1) # Mean for each row
std = df.sem(axis=1) # Unbiased Standard Deviation
year = df.index.map(str) # Convert to String
conf95 = st.t.ppf(0.95, N)*std # 95% Confidence Interval
upper = avg + conf95
lower = avg - conf95
colormap = ['blue', 'aqua', 'orange', 'brown']
ini = 39900
chk1 = ini>upper # Check if y is greater than upper bound: blue
chk2 = ini<lower # CHeck if y is smaller than lower bound: brown
chk3 = (ini>=lower) & (ini<=avg) # Check if y is in between avg and lower: orange
chk4 = (ini>avg) & (ini<=upper) # Check if y is in between avg and upper: aqua
fig, ax =plt.subplots()
ax.bar(df.index[chk1.values], avg.iloc[chk1.values], width=1, edgecolor='k', color='blue')
ax.bar(df.index[chk2.values], avg.iloc[chk2.values], width=1, edgecolor='k', color='brown')
ax.bar(df.index[chk3.values], avg.iloc[chk3.values], width=1, edgecolor='k', color='orange')
ax.bar(df.index[chk4.values], avg.iloc[chk4.values], width=1, edgecolor='k', color='aqua')
ax.axhline(y=ini,xmin=0,xmax=10,linewidth=1,color='k')
ax.errorbar(df.index, avg, yerr=conf95, fmt='.',capsize=15, color='k')
plt.subplots_adjust(left=0.1, bottom=0.2)
plt.xticks(df.index, year) # Map xlabel with String
plt.yticks(np.arange(0,max(avg)+1,max(avg)/5))
axcolor = 'lightgoldenrodyellow'
axy = plt.axes([0.1, 0.1, 0.7, 0.03], axisbg=axcolor)
sy = Slider(axy, 'y', 0.1, int(max(upper)+1), valinit=ini)
在这一步之前,颜色工作正常。然后更新功能不起作用。
def update(val):
ax.cla()
yy = sy.val
chk1 = yy>upper
chk2 = yy<lower
chk3 = (yy>=lower) & (yy<=avg)
chk4 = (yy>avg) & (yy<=upper)
ax.bar(df.index[chk1.values], avg.iloc[chk1.values], width=1, edgecolor='k', color='blue')
ax.bar(df.index[chk2.values], avg.iloc[chk2.values], width=1, edgecolor='k', color='brown')
ax.bar(df.index[chk3.values], avg.iloc[chk3.values], width=1, edgecolor='k', color='orange')
ax.bar(df.index[chk4.values], avg.iloc[chk4.values], width=1, edgecolor='k', color='aqua')
ax.bar(df.index, avg, width=1, edgecolor='k', color='silver')
ax.errorbar(df.index, avg, yerr=conf95, fmt='.',capsize=15, color='k')
ax.axhline(y=yy,xmin=0,xmax=10,linewidth=1,color='k')
fig.canvas.draw_idle()
sy.on_changed(update)
非常感谢任何见解,非常感谢你们!
最佳肖恩