我正在添加我的 RNN 文本分类模型。我正在使用最后一个状态对文本进行分类。数据集很小,我使用手套向量进行嵌入。
def rnn_inputs(FLAGS, input_data):
with tf.variable_scope('rnn_inputs', reuse=True):
W_input = tf.get_variable("W_input", [FLAGS.en_vocab_size, FLAGS.num_hidden_units])
embeddings = tf.nn.embedding_lookup(W_input, input_data)
return embeddings
self.inputs_X = tf.placeholder(tf.int32, shape=[None, None, FLAGS.num_dim_input], name='inputs_X')
self.targets_y = tf.placeholder(tf.float32, shape=[None, None], name='targets_y')
self.dropout = tf.placeholder(tf.float32, name='dropout')
self.seq_leng = tf.placeholder(tf.int32, shape=[None, ], name='seq_leng')
with tf.name_scope("RNNcell"):
stacked_cell = rnn_cell(FLAGS, self.dropout)
with tf.name_scope("Inputs"):
with tf.variable_scope('rnn_inputs'):
W_input = tf.get_variable("W_input", [FLAGS.en_vocab_size, FLAGS.num_hidden_units], initializer=tf.truncated_normal_initializer(stddev=0.1))
inputs = rnn_inputs(FLAGS, self.inputs_X)
#initial_state = stacked_cell.zero_state(FLAGS.batch_size, tf.float32)
with tf.name_scope("DynamicRnn"):
# flat_inputs = tf.reshape(inputs, [FLAGS.batch_size, -1, FLAGS.num_hidden_units])
flat_inputs = tf.transpose(tf.reshape(inputs, [-1, FLAGS.batch_size, FLAGS.num_hidden_units]), perm=[1, 0, 2])
all_outputs, state = tf.nn.dynamic_rnn(cell=stacked_cell, inputs=flat_inputs, sequence_length=self.seq_leng, dtype=tf.float32)
outputs = state[0]
with tf.name_scope("Logits"):
with tf.variable_scope('rnn_softmax'):
W_softmax = tf.get_variable("W_softmax", [FLAGS.num_hidden_units, FLAGS.num_classes])
b_softmax = tf.get_variable("b_softmax", [FLAGS.num_classes])
logits = rnn_softmax(FLAGS, outputs)
probabilities = tf.nn.softmax(logits, name="probabilities")
self.accuracy = tf.equal(tf.argmax(self.targets_y,1), tf.argmax(logits,1))
with tf.name_scope("Loss"):
self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=self.targets_y))
with tf.name_scope("Grad"):
self.lr = tf.Variable(0.0, trainable=False)
trainable_vars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, trainable_vars), FLAGS.max_gradient_norm)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_optimizer = optimizer.apply_gradients(zip(grads, trainable_vars))
sampling_outputs = all_outputs[0]
sampling_logits = rnn_softmax(FLAGS, sampling_outputs)
self.sampling_probabilities = tf.nn.softmax(sampling_logits)
打印输出
EPOCH 7 SUMMARY 40 STEP
Training loss 0.439
Training accuracy 0.247
----------------------
Validation loss 0.452
Validation accuracy 0.234
----------------------
Saving the model.
EPOCH 8 SUMMARY 45 STEP
Training loss 0.429
Training accuracy 0.281
----------------------
Validation loss 0.462
Validation accuracy 0.203
----------------------
Saving the model.
EPOCH 9 SUMMARY 50 STEP
Training loss 0.428
Training accuracy 0.268
----------------------
Validation loss 0.465
Validation accuracy 0.188
----------------------
Saving the model.
EPOCH 10 SUMMARY 55 STEP
Training loss 0.424
Training accuracy 0.284
----------------------
Validation loss 0.455
Validation accuracy 0.172
----------------------
Saving the model.
EPOCH 11 SUMMARY 60 STEP
Training loss 0.421
Training accuracy 0.305
----------------------
Validation loss 0.461
Validation accuracy 0.156
----------------------
Saving the model.
EPOCH 12 SUMMARY 65 STEP
Training loss 0.418
Training accuracy 0.299
----------------------
Validation loss 0.462
Validation accuracy 0.141
----------------------
Saving the model.
EPOCH 13 SUMMARY 70 STEP
Training loss 0.416
Training accuracy 0.286
----------------------
Validation loss 0.462
Validation accuracy 0.156
----------------------
Saving the model.
EPOCH 14 SUMMARY 75 STEP
Training loss 0.413
Training accuracy 0.323
----------------------
Validation loss 0.468
Validation accuracy 0.141
----------------------
Saving the model.
165 纪元后
EPOCH 165 SUMMARY 830 STEP
Training loss 0.306
Training accuracy 0.544
----------------------
Validation loss 0.547
Validation accuracy 0.109
----------------------
Saving the model.