我正在尝试构建一个文档检索模型,该模型返回按查询或搜索字符串的相关性排序的大多数文档。为此,我使用 gensim 中的模型训练了一个 doc2vec 模型Doc2Vec
。我的数据集采用 pandas 数据集的形式,其中每个文档都以字符串形式存储在每一行。这是我到目前为止的代码
import gensim, re
import pandas as pd
# TOKENIZER
def tokenizer(input_string):
return re.findall(r"[\w']+", input_string)
# IMPORT DATA
data = pd.read_csv('mp_1002_prepd.txt')
data.columns = ['merged']
data.loc[:, 'tokens'] = data.merged.apply(tokenizer)
sentences= []
for item_no, line in enumerate(data['tokens'].values.tolist()):
sentences.append(LabeledSentence(line,[item_no]))
# MODEL PARAMETERS
dm = 1 # 1 for distributed memory(default); 0 for dbow
cores = multiprocessing.cpu_count()
size = 300
context_window = 50
seed = 42
min_count = 1
alpha = 0.5
max_iter = 200
# BUILD MODEL
model = gensim.models.doc2vec.Doc2Vec(documents = sentences,
dm = dm,
alpha = alpha, # initial learning rate
seed = seed,
min_count = min_count, # ignore words with freq less than min_count
max_vocab_size = None, #
window = context_window, # the number of words before and after to be used as context
size = size, # is the dimensionality of the feature vector
sample = 1e-4, # ?
negative = 5, # ?
workers = cores, # number of cores
iter = max_iter # number of iterations (epochs) over the corpus)
# QUERY BASED DOC RANKING ??
我苦苦挣扎的部分是寻找与查询最相似/最相关的文档。我使用了,infer_vector
但后来意识到它将查询视为文档,更新模型并返回结果。我尝试使用most_similar
andmost_similar_cosmul
方法,但作为回报,我得到了单词和相似度分数(我猜)。我想要做的是当我输入搜索字符串(查询)时,我应该得到最相关的文档(id)以及相似度得分(余弦等)。我如何完成这部分?