我有 3 个 keras 模型的列表,每个模型的输出形状为(None, 2)
. 我还有一个通用的 keras 基本模型来产生他们的输入。我的目标是组合这 4 个模型,但只从列表中的每个模型中获取第一个输出(因此最终输出应该具有 shape (None, 3)
。当我尝试使用 Lambda 层从每个模型中提取第一个输出时出现问题模型。
如果我省略 Lambda 步骤并简单地将模型组合如下,它会创建一个模型,该模型可以提供正确的输出 shape (None, 6)
:
>>> sequentials = [Sequential([base_model, m]) for m in models]
>>> output = merge([s.output for s in sequentials], mode='concat')
>>> combined = Model(input=base_model.layers[0].input, output=output)
>>> combined.predict(X)
array([[ 8.52127552e-01, 1.47872433e-01, 1.89960217e-13,
1.00000000e+00, 7.56258190e-01, 2.43741751e-01]], dtype=float32)
当我第一次使用 Lambda 层从每个模型中提取第一个值时,就会出现问题:
>>> print([m.output_shape for m in models])
[(None, 2), (None, 2), (None, 2)]
>>> for m in models:
m.add(Lambda(lambda x: x[0], output_shape=(1,)))
>>> print([m.output_shape for m in models])
[(None, 1), (None, 1), (None, 1)]
>>> sequentials = [Sequential([base_model, m]) for m in models]
>>> print([s.output_shape for s in sequentials])
[(None, 1), (None, 1), (None, 1)]
>>> output = merge([s.output for s in sequentials],
output_shape=(len(sequentials),), mode='concat')
>>> combined = Model(base_model.layers[0].input, output=output)
>>> print(combined.output_shape)
(None, 3)
>>> combined.predict(X)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-4f4ed3bd605d> in <module>()
----> 1 ann.combined.predict(X)
./.virtualenvs/py3/lib/python3.4/site-packages/keras/engine/training.py in predict(self, x, batch_size, verbose)
1217 f = self.predict_function
1218 return self._predict_loop(f, ins,
-> 1219 batch_size=batch_size, verbose=verbose)
1220
1221 def train_on_batch(self, x, y,
./.virtualenvs/py3/lib/python3.4/site-packages/keras/engine/training.py in _predict_loop(self, f, ins, batch_size, verbose)
904
905 for i, batch_out in enumerate(batch_outs):
--> 906 outs[i][batch_start:batch_end] = batch_out
907 if verbose == 1:
908 progbar.update(batch_end)
ValueError: could not broadcast input array from shape (6) into shape (1)
合并这些模型的正确方法是什么,同时只从每个模型中获取单个输出值?
请注意,如果我在合并模型后应用它,我可以成功使用 Lambda 函数,如下所示:
>>> sequentials = [Sequential([base_model, m]) for m in models]
>>> output = merge([s.output for s in sequentials], mode='concat')
>>> filtered = Lambda(lambda x: x[:,::2], lambda s: (s[-1] / 2,))(output)
>>> combined = Model(input=base_model.layers[0].input, output=filtered)
>>> combined.predict(X)
array([[ 1.89960217e-13, 7.56258249e-01, 8.52127552e-01]], type=float32)
但我想知道如何在合并之前应用它。