2

这是试图回答以下问题: https ://matheducators.stackexchange.com/questions/11757/small-data-sets-with-integral-sample-standard-deviations

因此,以下代码的目的是查找具有整数标准差的小型数据集的示例。这可以表述为一个二次约束的混合整数二次程序,所以我尝试使用来自 Julia 的 Gurobin。以下是我的代码:

using JuMP  
using Gurobi

m = Model(solver = GurobiSolver() )
@variable(m,  0<= x[1:20] <= 100,  Int)
@variable(m,  Gj,  Int)
@constraint(m,  Gj == sum(x[1:20])/20 )
@variable(m,  Var,  Int)
@constraint(m,  Var == sum( (x[1:20]-Gj).^2/19) )
@variable(m,  sd,  Int)
@constraint(m, sd * sd == Var)
### We need some restrictions to avoid all equal, < or zero,  solutions:
@constraint(m,  sd >= 5)
@objective(m, Min, sd)

print(m)

status = solve(m)

println("Objective value: ", getobjectivevalue(m) )

x = getvalue(x)

运行此结果:

ERROR: Gurobi.GurobiError(10021, "Quadratic equality constraints")
Stacktrace:
 [1] optimize(::Gurobi.Model) at /home/kjetil/.julia/v0.6/Gurobi/src/grb_solve.jl:7
 [2] optimize!(::Gurobi.GurobiMathProgModel) at /home/kjetil/.julia/v0.6/Gurobi/src/GurobiSolverInterface.jl:294
 [3] #solve#101(::Bool, ::Bool, ::Bool, ::Array{Any,1}, ::Function, ::JuMP.Model) at /home/kjetil/.julia/v0.6/JuMP/src/solvers.jl:173
 [4] solve(::JuMP.Model) at /home/kjetil/.julia/v0.6/JuMP/src/solvers.jl:148

有任何想法吗?

4

2 回答 2

3

像 Gurobi Optimizer 这样的数学编程求解器无法求解具有二次等式约束的模型。以下是 Gurobi Optimizer 可以解决的约束类型。要使用 Gurobi Optimizer 求解模型,您必须将约束转换为其中一种形式,例如二次不等式约束。

于 2017-03-06T18:25:55.223 回答
0

主要问题是,一般来说,二次等式不是凸的,并且大多数求解器仅适用于凸问题(加上整数约束)。两个二进制变量的乘积很容易线性化(相当于逻辑与),一个二进制变量和一个连续变量的乘积也很容易;剩下的就不是那么容易了。

从 Gurobi 9 开始,您可以解决非凸双线性问题,尤其是那些具有二次等式约束的问题。您只需添加正确的参数。使用 Gurobi.jl,如果m是您的 JuMP 模型,您可以这样做:

set_optimizer_attribute(m, "NonConvex", 2)
于 2020-10-11T03:24:08.607 回答