(X,Y),(test_x,test_y)=cifar.load_data(one_hot=True)
X=X.reshape([-1,32,32,3])
test_x=test_x.reshape([-1,32,32,3])
convnet=input_data(shape=[None,32,32,3],name='input')
convnet=conv_2d(convnet,32,3,activation='relu')
convnet=max_pool_2d(convnet,2)
convnet=conv_2d(convnet,64,3,activation='relu')
convnet=max_pool_2d(convnet,2)
convnet=conv_2d(convnet,128,3,activation='relu')
convnet=conv_2d(convnet,128,3,activation='relu')
convnet=max_pool_2d(convnet,2)
convnet=fully_connected(convnet,512,activation='relu')
convnet=fully_connected(convnet,512,activation='relu')
convnet=dropout(convnet,0.8)
convnet=fully_connected(convnet,10,activation='softmax')
convnet=regression(convnet,optimizer='adam',learning_rate=0.001,loss='categorical_crossentropy')
model=tflearn.DNN(convnet)
model.fit(X,Y,n_epoch=1,validation_set=(test_x,test_y),batch_size=100,snapshot_step=1000,show_metric=True)
model.save('tflearn.model')
'''
model.load('tflearn.model')
print(model.predict(test_x[1]))
'''
当我尝试预测时,它显示错误:“无法为具有形状 '(?, 32, 32, 3) 的张量 u'input/X:0' 提供形状 (32, 32, 3) 的值”。
请有人帮忙。