我目前正在学习达夫尼。我完全被引理弄糊涂了,我不知道如何使用它。该教程没有那么有用。如果我想证明
count(a) <= |a|
我应该怎么做。感谢您的帮助。
function count(a: seq<bool>): nat
ensures count(a) <= |a|;
{
if |a| == 0 then 0 else
(if a[0] then 1 else 0) + count(a[1..])
}
我目前正在学习达夫尼。我完全被引理弄糊涂了,我不知道如何使用它。该教程没有那么有用。如果我想证明
count(a) <= |a|
我应该怎么做。感谢您的帮助。
function count(a: seq<bool>): nat
ensures count(a) <= |a|;
{
if |a| == 0 then 0 else
(if a[0] then 1 else 0) + count(a[1..])
}
你已经证明了!你写了你想要的属性作为函数的后置条件,Dafny 毫无怨言地验证它。而已。
您还可以使用引理来证明该属性。这是一个例子:
function count(a: seq<bool>): nat
{
if |a| == 0 then 0 else
(if a[0] then 1 else 0) + count(a[1..])
}
lemma CountProperty(a: seq<bool>)
ensures count(a) <= |a|
{
}
再一次,Dafny 验证了引理,没有发出任何抱怨,所以你已经证明了!
假设 Dafny 总是会自动为您证明事情是不正确的。因此,学习如何手动编写证明也是一个好主意。这是此属性的手动证明。为了确保 Dafny 不会尝试自动进行归纳,我使用了一个指令将其关闭(从而使我们的生活比 Dafny 通常会更难):
lemma {:induction false} CountProperty(a: seq<bool>)
ensures count(a) <= |a|
{
// Let's consider two cases, just like the definition of "count"
// considers two cases.
if |a| == 0 {
// In this case, we have:
assert count(a) == 0 && |a| == 0;
// so the postcondition follows easily.
} else {
// By the definition of "count", we have:
assert count(a) == (if a[0] then 1 else 0) + count(a[1..]);
// We know an upper bound on the first term of the addition:
assert (if a[0] then 1 else 0) <= 1;
// We can also obtain an upper bound on the second term by
// calling the lemma recursively. We do that here:
CountProperty(a[1..]);
// The call we just did gives us the following property:
assert count(a[1..]) <= |a[1..]|;
// Putting these two upper bounds together, we have:
assert count(a) <= 1 + |a[1..]|;
// We're almost done. We just need to relate |a[1..]| to |a|.
// This is easy:
assert |a[1..]| == |a| - 1;
// By the last two assertions, we now have:
assert count(a) <= 1 + |a| - 1;
// which is the postcondition we have to prove.
}
}
编写这样的证明的更好方法是使用经过验证的计算,Dafny 称之为“计算语句”:
lemma {:induction false} CountProperty(a: seq<bool>)
ensures count(a) <= |a|
{
if |a| == 0 {
// trivial
} else {
calc {
count(a);
== // def. count
(if a[0] then 1 else 0) + count(a[1..]);
<= // left term is bounded by 1
1 + count(a[1..]);
<= { CountProperty(a[1..]); } // induction hypothesis gives a bound for the right term
1 + |a[1..]|;
== { assert |a[1..]| == |a| - 1; }
|a|;
}
}
}
我希望这能让你开始。
安全编程,
鲁斯坦