我从 Spark 文档中阅读了 OHE 条目,
One-hot 编码将一列标签索引映射到一列二进制向量,最多只有一个单值。这种编码允许期望连续特征的算法(例如逻辑回归)使用分类特征。
但遗憾的是,他们没有对 OHE 结果给出完整的解释。所以运行给定的代码:
from pyspark.ml.feature import OneHotEncoder, StringIndexer
df = sqlContext.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
], ["id", "category"])
stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)
encoder = OneHotEncoder(inputCol="categoryIndex", outputCol="categoryVec")
encoded = encoder.transform(indexed)
encoded.show()
并得到了结果:
+---+--------+-------------+-------------+
| id|category|categoryIndex| categoryVec|
+---+--------+-------------+-------------+
| 0| a| 0.0|(2,[0],[1.0])|
| 1| b| 2.0| (2,[],[])|
| 2| c| 1.0|(2,[1],[1.0])|
| 3| a| 0.0|(2,[0],[1.0])|
| 4| a| 0.0|(2,[0],[1.0])|
| 5| c| 1.0|(2,[1],[1.0])|
+---+--------+-------------+-------------+
我如何解释 OHE(最后一列)的结果?