有趣的问题。这是我的看法 - 让我们看看我是否没有在任何地方犯错!
首先,我将用(稍微不那么伪的)Haskell 拼写你的签名:
return :: a -> PSet (r -> a)
(>>=) :: PSet (r -> a) -> (a -> PSet (r -> b)) -> PSet (r -> b))
在继续之前,值得一提的是两个实际的并发症。首先,正如您已经观察到的,由于Eq
和/或Ord
约束,给出集合Functor
或Monad
实例并非易事;无论如何,有办法绕过它。其次,更令人担忧的是,对于您建议的类型,(>>=)
有必要在没有任何明显 s 供应的情况下从中提取 sa
-或者换句话说,您需要遍历函数 functor 。当然,这在一般情况下是不可能的,即使在可能的情况下也往往是不切实际的——至少就 Haskell 而言。无论如何,为了我们的推测目的,假设我们可以遍历PSet (r -> a)
r
(>>=)
(->) r
(->) r
通过将函数应用于所有可能的r
值。我将通过一个手工波浪形的universe :: PSet r
套装来表明这一点,以向这个包致敬。我还将使用universe :: PSet (r -> b)
, 并假设我们可以判断两个r -> b
函数是否一致,r
即使不需要Eq
约束。(伪 Haskell 确实越来越假了!)
做了初步的评论,这里是你的方法的伪 Haskell 版本:
return :: a -> PSet (r -> a)
return x = singleton (const x)
(>>=) :: PSet (r -> a) -> (a -> PSet (r -> b)) -> PSet (r -> b))
m >>= f = unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (x r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
where
unionMap f = unions . map f
intersectionMap f = intersections . map f
接下来,单子定律:
m >>= return = m
return y >>= f = f y
m >>= f >>= g = m >>= \y -> f y >>= g
(顺便说一句,在做这种事情时,最好记住我们正在使用的课程的其他演示文稿 - 在这种情况下,我们有join
并且(>=>)
作为替代(>>=)
- 因为切换演示文稿可能会与您的选择的例子更令人愉快。这里我将坚持(>>=)
介绍Monad
。)
继续第一条法律...
m >>= return = m
m >>= return -- LHS
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (singleton (const (x r))))
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
const (x r) r == rb r)
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
x r == rb r)
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
-- In other words, rb has to agree with x for all r.
unionMap (\x -> singleton x) m
m -- RHS
一个下来,两个去。
return y >>= f = f y
return y -- LHS
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (x r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)) (singleton (const y))
(\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (x r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)) (const y)
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (const y r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f y)))
(universe :: PSet (r -> b)))
(universe :: PSet r)
-- This set includes all functions that agree with at least one function
-- from (f y) at each r.
return y >>= f
因此,可能是一个比 大得多的集合f y
。我们违反了第二定律;因此,我们没有 monad —— 至少在此处提出的实例中没有。
附录:这是你的函数的一个实际的、可运行的实现,它至少可以用于小类型。它利用了前面提到的Universe包。
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
module FunSet where
import Data.Universe
import Data.Map (Map)
import qualified Data.Map as M
import Data.Set (Set)
import qualified Data.Set as S
import Data.Int
import Data.Bool
-- FunSet and its would-be monad instance
newtype FunSet r a = FunSet { runFunSet :: Set (Fun r a) }
deriving (Eq, Ord, Show)
fsreturn :: (Finite a, Finite r, Ord r) => a -> FunSet r a
fsreturn x = FunSet (S.singleton (toFun (const x)))
-- Perhaps we should think of a better name for this...
fsbind :: forall r a b.
(Ord r, Finite r, Ord a, Ord b, Finite b, Eq b)
=> FunSet r a -> (a -> FunSet r b) -> FunSet r b
fsbind (FunSet s) f = FunSet $
unionMap (\x ->
intersectionMap (\r ->
S.filter (\rb ->
any (\rb' -> funApply rb' r == funApply rb r)
((runFunSet . f) (funApply x r)))
(universeF' :: Set (Fun r b)))
(universeF' :: Set r)) s
toFunSet :: (Finite r, Finite a, Ord r, Ord a) => [r -> a] -> FunSet r a
toFunSet = FunSet . S.fromList . fmap toFun
-- Materialised functions
newtype Fun r a = Fun { unFun :: Map r a }
deriving (Eq, Ord, Show, Functor)
instance (Finite r, Ord r, Universe a) => Universe (Fun r a) where
universe = fmap (Fun . (\f ->
foldr (\x m ->
M.insert x (f x) m) M.empty universe))
universe
instance (Finite r, Ord r, Finite a) => Finite (Fun r a) where
universeF = universe
funApply :: Ord r => Fun r a -> r -> a
funApply f r = maybe
(error "funApply: Partial functions are not fun")
id (M.lookup r (unFun f))
toFun :: (Finite r, Finite a, Ord r) => (r -> a) -> Fun r a
toFun f = Fun (M.fromList (fmap ((,) <$> id <*> f) universeF))
-- Set utilities
unionMap :: (Ord a, Ord b) => (a -> Set b) -> (Set a -> Set b)
unionMap f = S.foldl S.union S.empty . S.map f
-- Note that this is partial. Since for our immediate purposes the only
-- consequence is that r in FunSet r a cannot be Void, I didn't bother
-- with making it cleaner.
intersectionMap :: (Ord a, Ord b) => (a -> Set b) -> (Set a -> Set b)
intersectionMap f s = case ss of
[] -> error "intersectionMap: Intersection of empty set of sets"
_ -> foldl1 S.intersection ss
where
ss = S.toList (S.map f s)
universeF' :: (Finite a, Ord a) => Set a
universeF' = S.fromList universeF
-- Demo
main :: IO ()
main = do
let andor = toFunSet [uncurry (&&), uncurry (||)]
print andor -- Two truth tables
print $ funApply (toFun (2+)) (3 :: Int8) -- 5
print $ (S.map (flip funApply (7 :: Int8)) . runFunSet)
(fsreturn (Just True)) -- fromList [Just True]
-- First monad law demo
print $ fsbind andor fsreturn == andor -- True
-- Second monad law demo
let twoToFour = [ bool (Left False) (Left True)
, bool (Left False) (Right False)]
decider b = toFunSet
(fmap (. bool (uncurry (&&)) (uncurry (||)) b) twoToFour)
print $ fsbind (fsreturn True) decider == decider True -- False (!)