我想重建一个我首先用 scikit-learn 的 MLPRegressor 和 tflearn 实现的 MLP。
sklearn.neural_network.MLPRegressor 实现:
train_data = pd.read_csv('train_data.csv', delimiter = ';', decimal = ',', header = 0)
test_data = pd.read_csv('test_data.csv', delimiter = ';', decimal = ',', header = 0)
X_train = np.array(train_data.drop(['output'], 1))
X_scaler = StandardScaler()
X_scaler.fit(X_train)
X_train = X_scaler.transform(X_train)
Y_train = np.array(train_data['output'])
clf = MLPRegressor(activation = 'tanh', solver='lbfgs', alpha=0.0001, hidden_layer_sizes=(3))
clf.fit(X_train, Y_train)
prediction = clf.predict(X_train)
该模型有效,我得到了0.85
. 现在我想用 tflearn 构建一个类似的 MLP。我从以下代码开始:
train_data = pd.read_csv('train_data.csv', delimiter = ';', decimal = ',', header = 0)
test_data = pd.read_csv('test_data.csv', delimiter = ';', decimal = ',', header = 0)
X_train = np.array(train_data.drop(['output'], 1))
X_scaler = StandardScaler()
X_scaler.fit(X_train)
X_train = X_scaler.transform(X_train)
Y_train = np.array(train_data['output'])
Y_scaler = StandardScaler()
Y_scaler.fit(Y_train)
Y_train = Y_scaler.transform(Y_train.reshape((-1,1)))
net = tfl.input_data(shape=[None, 6])
net = tfl.fully_connected(net, 3, activation='tanh')
net = tfl.fully_connected(net, 1, activation='sigmoid')
net = tfl.regression(net, optimizer='sgd', loss='mean_square', learning_rate=3.)
clf = tfl.DNN(net)
clf.fit(X_train, Y_train, n_epoch=200, show_metric=True)
prediction = clf.predict(X_train)
在某些时候,我肯定以错误的方式配置了一些东西,因为预测已经偏离了。Y_train 的范围在20
和之间88
,预测显示数字在 左右0.005
。在 tflearn 文档中,我刚刚找到了分类示例。
更新 1:
我意识到回归层默认使用'categorical_crossentropy'
作为分类问题的损失函数。所以我选择'mean_square'
了。我也尝试正常化Y_train
. 预测仍然与 的范围不匹配Y_train
。有什么想法吗?
最后更新:
看看接受的答案。