4

我的问题在概念上很简单。我正在寻找一种计算效率高的解决方案(我自己的解决方案我最后附上)。

假设我们有一个可能非常大的稀疏矩阵,如左下角的矩阵,并且想要用单独的代码“命名”每个连续的非零元素区域(参见右侧的矩阵)

1 1 1 . . . . .          1 1 1 . . . . .
1 1 1 . 1 1 . .          1 1 1 . 4 4 . .
1 1 1 . 1 1 . .          1 1 1 . 4 4 . .
. . . . 1 1 . .   --->   . . . . 4 4 . .
. . 1 1 . . 1 1          . . 3 3 . . 7 7
1 . 1 1 . . 1 1          2 . 3 3 . . 7 7
1 . . . 1 . . .          2 . . . 5 . . .
1 . . . . 1 1 1          2 . . . . 6 6 6

在我的应用程序中,连续元素将形成矩形、线或单点,它们只能与顶点相互接触(即矩阵中不会有不规则/非矩形区域)。

我想象的解决方案是将稀疏矩阵表示的行和列索引与具有适当值(“名称”代码)的向量匹配。我的解决方案使用了几个for loops并且适用于中小型矩阵,但随着矩阵的尺寸变大(> 1000)会很快陷入循环。这可能取决于我在 R 编程方面不是那么先进的事实——我找不到任何计算技巧/函数来更好地解决它。

任何人都可以提出一种计算上更有效的方法来在 R 中做到这一点吗?

我的解决方案:

mySolution <- function(X){

  if (class(X) != "ngCMatrix") {stop("Input must be a Sparse Matrix")}
  ind <- which(X == TRUE, arr.ind = TRUE)
  r <- ind[,1]
  c <- ind[,2]

  lr <- nrow(ind)
  for (i in 1:lr) {
    if(i == 1) {bk <- 1}
    else {
      if (r[i]-r[i-1] == 1){bk <- c(bk, bk[i-1])}
      else {bk <- c(bk, bk[i-1]+1)}
    }
  }

  for (LOOP in 1:(lr-1)) {
    tr <- r[LOOP]
    tc <- c[LOOP]
    for (j in (LOOP+1):lr){
      if (r[j] == tr) {
        if(c[j] == tc + 1) {bk[j] <- bk[LOOP]} 
      }
    }
  }

  val <- unique(bk)
  for (k in 1:lr){
    bk[k] <- which(val==bk[k])
  }

  return(sparseMatrix(i = r, j = c, x = bk))
}

提前感谢您的任何帮助或指示。

4

1 回答 1

4

严重依赖于所有要分组的相邻元素仅形成矩形/线/点这一事实,我们看到矩阵的元素可以根据它们[row, col]在矩阵上的索引通过关系聚合(abs(row1 - row2) + abs(col1 - col2)) < 2

因此,从[row, col]索引开始:

sm = as.matrix(summary(m))

我们计算它们的距离,正如 GiuGe 所指出的那样,这实际上是“曼哈顿”方法:

d = dist(sm, "manhattan")

在最近的邻居上聚类元素中的单链接属性在这里很有用。此外,我们可以通过cutree对“h = 1”(索引的距离为“< 2”)进行 ing 来获得元素的分组:

gr = cutree(hclust(d, "single"), h = 1)

最后,我们可以将上述内容包装在一个新的稀疏矩阵中:

sparseMatrix(i = sm[, "i"], j = sm[, "j"], x = gr)
#8 x 8 sparse Matrix of class "dgCMatrix"
#                    
#[1,] 1 1 1 . . . . .
#[2,] 1 1 1 . 4 4 . .
#[3,] 1 1 1 . 4 4 . .
#[4,] . . . . 4 4 . .
#[5,] . . 3 3 . . 7 7
#[6,] 2 . 3 3 . . 7 7
#[7,] 2 . . . 5 . . .
#[8,] 2 . . . . 6 6 6

使用的“m”是:

library(Matrix)
m = new("ngCMatrix"
    , i = c(0L, 1L, 2L, 5L, 6L, 7L, 0L, 1L, 2L, 0L, 1L, 2L, 4L, 5L, 4L, 
5L, 1L, 2L, 3L, 6L, 1L, 2L, 3L, 7L, 4L, 5L, 7L, 4L, 5L, 7L)
    , p = c(0L, 6L, 9L, 14L, 16L, 20L, 24L, 27L, 30L)
    , Dim = c(8L, 8L)
    , Dimnames = list(NULL, NULL)
    , factors = list()
)

编辑 2017 年 2 月 10 日

另一个想法(并且再次考虑到相邻元素仅形成矩形/线/点的事实)是迭代 - 在升序中 - 通过[row, col]索引,并在每一步中,找到其最近邻居的每个元素的距离当前列和行。如果找到“< 2”距离,则该元素与其邻居分组,否则开始一个新组。包装成一个函数:

ff = function(x) 
{
    sm = as.matrix(summary(x))

    gr = integer(nrow(sm)); ngr = 0L ; gr[1] = ngr 

    lastSeenRow = integer(nrow(x))
    lastSeenCol = integer(ncol(x))

    for(k in 1:nrow(sm)) {
        kr = sm[k, 1]; kc = sm[k, 2]
        i = lastSeenRow[kr]
        j = lastSeenCol[kc]

        if(i && (abs(kc - sm[i, 2]) == 1)) gr[k] = gr[i]
        else if(j && (abs(kr - sm[j, 1]) == 1)) gr[k] = gr[j]  
             else { ngr = ngr + 1L; gr[k] = ngr } 

        lastSeenRow[kr] = k
        lastSeenCol[kc] = k        
    }

    sparseMatrix(i = sm[, "i"], j = sm[, "j"], x = gr)                 
}                  

并应用于“m”:

ff(m)
#8 x 8 sparse Matrix of class "dgCMatrix"
#                    
#[1,] 1 1 1 . . . . .
#[2,] 1 1 1 . 4 4 . .
#[3,] 1 1 1 . 4 4 . .
#[4,] . . . . 4 4 . .
#[5,] . . 3 3 . . 7 7
#[6,] 2 . 3 3 . . 7 7
#[7,] 2 . . . 5 . . .
#[8,] 2 . . . . 6 6 6

此外,这两个函数以相同的顺序返回组很方便,我们可以检查:

identical(mySolution(m), ff(m))
#[1] TRUE

在一个看似更复杂的例子中:

mm = new("ngCMatrix"
    , i = c(25L, 26L, 27L, 25L, 29L, 25L, 25L, 17L, 18L, 26L, 3L, 4L, 5L, 
14L, 17L, 18L, 25L, 27L, 3L, 4L, 5L, 17L, 18L, 23L, 26L, 3L, 
4L, 5L, 10L, 17L, 18L, 9L, 11L, 17L, 18L, 10L, 17L, 18L, 3L, 
17L, 18L, 21L, 17L, 18L, 17L, 18L, 1L, 2L, 3L, 4L, 16L, 8L, 17L, 
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 7L, 9L, 10L, 11L, 26L, 
8L, 27L, 1L, 2L, 28L, 1L, 2L, 15L, 27L, 1L, 2L, 21L, 22L, 1L, 
2L, 7L, 21L, 22L, 1L, 2L, 6L, 24L, 1L, 2L, 5L, 11L, 16L, 25L, 
26L, 27L, 4L, 15L, 17L, 19L, 25L, 26L, 27L, 3L, 16L, 25L, 26L, 
27L, 2L, 28L, 1L)
    , p = c(0L, 0L, 3L, 3L, 5L, 6L, 7L, 7L, 10L, 18L, 25L, 31L, 35L, 38L, 
42L, 44L, 46L, 51L, 61L, 66L, 68L, 71L, 75L, 79L, 84L, 88L, 96L, 
103L, 108L, 110L, 111L)
    , Dim = c(30L, 30L)
    , Dimnames = list(NULL, NULL)
    , factors = list()
)
identical(mySolution(mm), ff(mm))
#[1] TRUE

还有一个更大矩阵的简单基准:

times = 30 # times `dim(mm)`
MM2 = do.call(cbind, rep_len(list(do.call(rbind, rep_len(list(mm), times))), times))
dim(MM2)
#[1] 900 900

system.time({ ans1 = mySolution(MM2) })
#   user  system elapsed 
# 449.50    0.53  463.26

system.time({ ans2 = ff(MM2) })
#   user  system elapsed 
#   0.51    0.00    0.52

identical(ans1, ans2)
#[1] TRUE
于 2017-02-08T17:58:04.993 回答