Q 的第二部分:然后使用括号和二分法求解 y 的 (x^2)(e^(-x^2))dx=0.1 的 0 和 y 之间的积分。
这是我到目前为止所做的:
#include <stdio.h>
#include <math.h>
double f(double x, double y);
int main(void) {
int i, steps;
double a, b, y, h, m, lower, upper, x, simp, val;
/*
* Integrate (x^2)(e^(-x^2)) from 0 to y
*/
steps = 20000;
a = 0;
b = y;
h= (b-a)/steps;
/*
* now apply Simpson's rule. Note that the steps should be even.
*/
simp = -f(a, y);
x = a;
for (i =0; i < steps; i += 2) {
simp += 2.0*f(x,y)+4.0*f(x+h, y);
x += 2*h;
}
simp += f(b, y);
simp *= h/3.0;
/*
* print out the answer
*/
printf("The integral from 0 to y with respect to x by Simpson's Rule is %f\n", simp);
/*
* Now we need to bracket and bisect to find y
*/
lower = 0;
/*
* Lower bound is from turning point
*/
upper = 100;
/*
*Upper value given.
*/
while (upper - lower > 10E-10){
m = (lower + upper)/2;
val = f(m, y);
if (val >=0)
upper = m;
if (val <=0)
lower = m;
}
m = (lower + upper)/2;
printf("The value for y is: %lf\n", m);
return 0;
}
double f(double x, double y) {
return pow(x,2)*exp(pow(-x,2))-0.1;
}
Output: The integral from 0 to y with respect to x by Simpson's Rule is -0.000000
The value for y is: 0.302120
它运行但不完全符合我的需要。一旦我使用 0 和 y 作为限制,我需要能够继续使用积分。我不能这样做。然后继续求解 y。它给了我一个 y 的值,但与我使用在线计算器求解时得到的值不同。此外,即使我将要积分的方程更改为 x^2,积分的输出也为零。任何人都可以帮助用尽可能简单的术语解释吗?