PST
给我各种上下文和以下状态的概率和条件概率。但是,能够计算上下文和后续状态之间关系的提升(及其重要性)将非常有帮助。我怎样才能做到这一点?
# Load libraries
library(RCurl)
library(TraMineR)
library(PST)
# Get data
x <- getURL("https://gist.githubusercontent.com/aronlindberg/08228977353bf6dc2edb3ec121f54a29/raw/c2539d06771317c5f4c8d3a2052a73fc485a09c6/challenge_level.csv")
data <- read.csv(text = x)
# Load and transform data
data <- read.table("thread_level.csv", sep = ",", header = F, stringsAsFactors = F)
# Create sequence object
data.seq <- seqdef(data[2:nrow(data),2:ncol(data)], missing = NA, right= NA, nr = "*")
# Make a tree
S1 <- pstree(data.seq, ymin = 0.05, L = 6, lik = TRUE, with.missing = TRUE)
# Look at first state
cmine(S1, pmin = 0, state = "N3", l = 2)
这给出了几个上下文,其中之一是:
[>] context: N2
EX FA I1 I2 I3 N1 N2 N3 NR QU
S1 0.07692308 0.08076923 0.05769231 0.07692308 0.05 0.06923077 0.1038462 0.06153846 0.1269231 0.07307692
TR *
S1 0.08076923 0.1423077
假设我想计算 和 之间关系的QU
提升N3
。我们知道N3
给定的条件概率N2
是0.05
。要计算升力,我是否只需将条件概率除以结果状态的无条件概率,如下所示:
0.05/unconditional probability of N3
如果我们这样做,seqstatf(data.seq)
我们可以看到N3
标记的分数是0.01721715
。那么这是否意味着电梯是:
0.05/0.01721715=2.90408110518
或者更合适的方法是采用N3
给出e
的概率cmine(S1, pmin = 0, state = "N3", l = 1)
,即0.001554569
?这将产生以下提升:
0.05/0.001554569=32.163255539
这要高得多...