我的疑问是,是否有可能将来自“mice()”的多个插补数据集汇集到来自“crr()”的 Fine-Gray 拟合模型上,并且它在统计上是否正确......
例子
library(survival)
library(mice)
library(cmprsk)
test1 <- as.data.frame(list(time=c(4,3,1,1,2,2,3,5,2,4,5,1, 4,3,1,1,2,2,3,5,2,4,5,1),
status=c(1,1,1,0,2,2,0,0,1,1,2,0, 1,1,1,0,2,2,0,0,1,1,2,0),
x=c(0,2,1,1,NA,NA,0,1,1,2,0,1, 0,2,1,1,NA,NA,0,1,1,2,0,1),
sex=c(0,0,0,NA,1,1,1,1,NA,1,0,0, 0,0,0,NA,1,1,1,1,NA,1,0,0)))
dat <- mice(test1,m=10, seed=1982)
#Cox regression: cause 1
models.cox1 <- with(dat,coxph(Surv(time, status==1) ~ x +sex ))
summary(pool(models.cox1))
#Cox regression: cause 1 or 2
models.cox <- with(dat,coxph(Surv(time, status==1 | status==2) ~ x +sex ))
models.cox
summary(pool(models.cox))
#### crr()
#Fine-Gray model
models.FG<- with(dat,crr(ftime=time, fstatus=status, cov1=test1[,c( "x","sex")], failcode=1, cencode=0, variance=TRUE))
summary(pool(models.FG))
#Error in pool(models.FG) : Object has no vcov() method.
models.FG