3

Consider a Swing application with a JList or JTable, when the selection changes a SwingWorker is started and loads related data from database and updates UI. 这工作正常,用户界面响应。

但是,如果用户正在快速更改所选行(按住键向上/向下键),我想确保最后选择的行是最后加载的行,而且我不想徒劳地查询数据库。所以我想要的是一个单线程执行器,它的后进先出队列大小=1。因此,向其提交任务会删除任何先前提交的任务,并使其一次最多执行 1 个任务,并且最多有 1 个任务等待执行。

我在 java.util.concurrent 中找不到类似的东西,所以我编写了自己的 Executor。我这样做是对的,还是我错过了并发包中的某些内容?解决方案是可以接受的还是有更好的方法来实现我想要的?

public class SingleLIFOExecutor implements Executor
{
    private final ThreadPoolExecutor executor;
    private Runnable lastCommand;

    public SingleLIFOExecutor()
    {
        executor = new ThreadPoolExecutor(0, 1, 0, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<Runnable>(1));
    }

    @Override
    public void execute(Runnable command)
    {
        executor.remove(lastCommand);
        lastCommand = command;
        executor.execute(command);
    }
}

这是一个示例,展示了如何使用它:

final Executor executor = new SingleLIFOExecutor();
JList jList = createMyList();
jList.addListSelectionListener(new ListSelectionListener()
{
    @Override
    public void valueChanged(ListSelectionEvent e)
    {
        if (!e.getValueIsAdjusting())
        {
            executor.execute(new MyWorker());
        }
    }
});
4

3 回答 3

1

LinkedBlockingDeque 似乎仍在使用带有 ThreadPoolExecutor 的队列。

因此,我使用了一个包装器并将其与 ThreadPoolExecutor 一起使用:

package util;

import java.util.Collection;
import java.util.Iterator;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.TimeUnit;

/**
 * LIFO BlockingQueue to be used with the ExecutorService.
 * @author Daniel
 * @param <T>
 */
public class LinkedBlockingStack<T> implements BlockingQueue<T>{
    private final LinkedBlockingDeque<T> stack = new LinkedBlockingDeque<T>();

    @Override
    public T remove() {
        return stack.remove();
    }

    @Override
    public T poll() {
        return stack.poll();
    }

    @Override
    public T element() {
        return stack.element();
    }

    @Override
    public T peek() {
        return stack.peek();
    }

    @Override
    public int size() {
        return stack.size();
    }

    @Override
    public boolean isEmpty() {
        return stack.isEmpty();
    }

    @Override
    public Iterator<T> iterator() {
        return stack.iterator();
    }

    @Override
    public Object[] toArray() {
        return stack.toArray();
    }

    @Override
    public <S> S[] toArray(final S[] a) {
        return stack.toArray(a);
    }

    @Override
    public boolean containsAll(final Collection<?> c) {
        return stack.containsAll(c);
    }

    @Override
    public boolean addAll(final Collection<? extends T> c) {
        return stack.addAll(c);
    }

    @Override
    public boolean removeAll(final Collection<?> c) {
        return stack.removeAll(c);
    }

    @Override
    public boolean retainAll(final Collection<?> c) {
        return stack.removeAll(c);
    }

    @Override
    public void clear() {
        stack.clear();
    }

    @Override
    public boolean add(final T e) {
        return stack.offerFirst(e); //Used offerFirst instead of add.
    }

    @Override
    public boolean offer(final T e) {
        return stack.offerFirst(e); //Used offerFirst instead of offer.
    }

    @Override
    public void put(final T e) throws InterruptedException {
        stack.put(e);
    }

    @Override
    public boolean offer(final T e, final long timeout, final TimeUnit unit)
    throws InterruptedException {
        return stack.offerLast(e, timeout, unit);
    }

    @Override
    public T take() throws InterruptedException {
        return stack.take();
    }

    @Override
    public T poll(final long timeout, final TimeUnit unit)
    throws InterruptedException {
        return stack.poll();
    }

    @Override
    public int remainingCapacity() {
        return stack.remainingCapacity();
    }

    @Override
    public boolean remove(final Object o) {
        return stack.remove(o);
    }

    @Override
    public boolean contains(final Object o) {
        return stack.contains(o);
    }

    @Override
    public int drainTo(final Collection<? super T> c) {
        return stack.drainTo(c);
    }

    @Override
    public int drainTo(final Collection<? super T> c, final int maxElements) {
        return stack.drainTo(c, maxElements);
    }
}
于 2010-11-22T22:18:44.397 回答
0

BlockingDeque 我相信是你想要的。它支持堆栈。

我的代码中有什么:

private transient final ExecutorService threadPool= 
     new ThreadPoolExecutor(3, 10,10, 
                            TimeUnit.MILLISECONDS, 
                            new LinkedBlockingDeque<Runnable>());
于 2010-11-21T22:41:23.347 回答
0

这是我实施的解决方案,非常适合我试图解决的问题:)

/**
 * A "Single Last-In-First-Out Executor".
 * <p>
 * It maintains a queue of <b>one</b> task and only one task may execute simultaneously,
 * submitting a new task to {@link #execute(Runnable)} will discard any previous submitted not yet started tasks.
 */
public class SingleLIFOExecutor implements Executor
{
    private final ThreadPoolExecutor executor;
    private Runnable lastCommand;

    public SingleLIFOExecutor()
    {
        executor = new ThreadPoolExecutor(0, 1, 0, MILLISECONDS, new ArrayBlockingQueue<Runnable>(1));
    }

    /**
     * @see java.util.concurrent.Executor#execute(java.lang.Runnable)
     */
    @Override
    public void execute(Runnable command)
    {
        executor.remove(lastCommand);
        lastCommand = command;
        executor.execute(command);
    }
}
于 2011-10-18T14:31:06.363 回答