2

当我在顶部循环中有一个内核时,为什么我不能使用这两个指令:

#pragma acc update device(hbias[0:n_hidden],W[0:n_hidden][0:n_visible])   
#pragma acc update device(vbias[0:n_visible)

我需要在下面的代码中更新这些变量hbias, vbiasW但它不起作用:

void RBM::contrastive_divergence(int train_X[6][6], double learning_rate, int k) {
    double r= rand() / (RAND_MAX + 1.0);

        int * input = new int[n_visible];
        double *ph_mean = new double[n_hidden];
        int *ph_sample = new int[n_hidden];
        double *nv_means = new double[n_visible];
        int *nv_samples = new int[n_visible];
        double *nh_means = new double[n_hidden];
        int *nh_samples = new int[n_hidden];

        #pragma acc kernels
        for (int i = 0; i<train_N; i++) {


            for (int j = 0; j< n_visible; j++){
                input[j] = train_X[i][j];
            }


            sample_h_given_v(input, ph_mean, ph_sample,r);

            for (int step = 0; step<k; step++) {
                if (step == 0) {
                    gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples,r);
                }
                else {
                    gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples,r);
                }
            }


            for (int i = 0; i<n_hidden; i++) {
                for (int j = 0; j<n_visible; j++) {

                 W[i][j] += learning_rate * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;

                }
                hbias[i] += learning_rate * (ph_sample[i] - nh_means[i]) / N;

            }
    //this directive
       #pragma acc update device(hbias[0:n_hidden],W[0:n_hidden][0:n_visible])


            for (int i = 0; i<n_visible; i++) {
                vbias[i] += learning_rate * (input[i] - nv_samples[i]) / N;
            }
    //and this directive
       #pragma acc update device(vbias[0:n_visible)
     }

        delete[] input;
        delete[] ph_mean;
        delete[] ph_sample;
        delete[] nv_means;
        delete[] nv_samples;
        delete[] nh_means;
        delete[] nh_samples;
    }

但是当我在每个嵌套循环上有许多分离的内核时,我可以更新变量:

   void RBM::contrastive_divergence(int train_X[6][6], double learning_rate, int k) {
    double r= rand() / (RAND_MAX + 1.0);

        int * input = new int[n_visible];
        double *ph_mean = new double[n_hidden];
        int *ph_sample = new int[n_hidden];
        double *nv_means = new double[n_visible];
        int *nv_samples = new int[n_visible];
        double *nh_means = new double[n_hidden];
        int *nh_samples = new int[n_hidden];


    for (int i = 0; i<train_N; i++) {

            #pragma acc kernels
                for (int j = 0; j< n_visible; j++){
                    input[j] = train_X[i][j];
                }


                sample_h_given_v(input, ph_mean, ph_sample,r);
            #pragma acc kernels
                for (int step = 0; step<k; step++) {
                    if (step == 0) {
                        gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples,r);
                    }
                    else {
                        gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples,r);
                    }
                }

            #pragma acc kernels
            {  
                for (int i = 0; i<unhidden; i++) {
                    for (int j = 0; j<n_visible; j++) {

                        W[i][j] += learning_rate * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;

                    }
                hbias[i] += learning_rate * (ph_sample[i] - nh_means[i]) / N;

                }
        //this directive
            #pragma acc update device(hbias[0:n_hidden],W[0:n_hidden][0:n_visible])
            }


            #pragma acc kernels
            {
                for (int i = 0; i<n_visible; i++) {
                    vbias[i] += learning_rate * (input[i] - nv_samples[i]) / N;
                }

            //and this directive
                #pragma acc update device(vbias[0:n_visible)
            }
     }

        delete[] input;
        delete[] ph_mean;
        delete[] ph_sample;
        delete[] nv_means;
        delete[] nv_samples;
        delete[] nh_means;
        delete[] nh_samples;
    }
4

1 回答 1

2

“更新”指令只能在主机代码中使用,因为数据移动必须从主机启动。您不能将它们放在计算区域内。

这段代码有很多问题。首先,对嵌套循环使用相同的索引变量(在这种情况下为“i”)可能是不好的做法。尽管范围规则允许这样做,但很难判断代码应该使用哪个“i”。

外部“i”循环可能不安全并行化,因此您不应该将“kernels”指令放在该循环之外。也许如果您将“输入”数组私有化,然后在更新 vbias、hbias、W 数组时使用原子,它可能会起作用,但您的性能会很差。(您还需要确定其他数组是否需要私有化或者是全局的,因此需要原子操作)。

我建议首先在内部循环周围放置“#pragma acc 并行循环”,一次一个。在继续下一个之前,确保每个都有效。此外,我高度怀疑“step”循环是否可并行化,因此您很可能需要并行化“gibbs_hvh”子例程中的循环。

由于您使用的是 CUDA 统一内存 (-ta=tesla:managed),因此可能不需要添加数据区域。但是,如果您计划将来不使用托管内存,下一步将是在外部“i”循环周围添加数据指令(或在程序的较高点,然后使用更新指令在外部“我”循环)。

于 2017-01-16T21:47:44.777 回答