我正在尝试从数据集创建主题模型。该代码能够正确使用 NMF 从解析的数据中生成任务数量的主题,但是当语料库长度 = 20 时它会中断,如下所示
20
[u'bell', u'closed', u'day', u'drinks', u'enjoy', u'food', u'good', u'great', u'll', u'new', u'nice', u'original', u'people', u'phoenix', u'place', u'rd', u'reopened', u'terrific', u'try', u'weekly']
Traceback (most recent call last):
File "sklearnTfidf.py", line 238, in <module>
trainTest()
File "sklearnTfidf.py", line 185, in trainTest
posDic += buildDictionary(pos_reviews)
File "sklearnTfidf.py", line 143, in buildDictionary
sortedDict = buildTFIDF(review)
File "sklearnTfidf.py", line 110, in buildTFIDF
nmf = NMF(n_components=no_topics, random_state=1, init='nndsvd').fit(tfidf)
File "/opt/anaconda/lib/python2.7/site-packages/sklearn/decomposition/nmf.py", line 551, in fit
self.fit_transform(X, **params)
File "/opt/anaconda/lib/python2.7/site-packages/sklearn/decomposition/nmf.py", line 485, in fit_transform
W, H = self._init(X)
File "/opt/anaconda/lib/python2.7/site-packages/sklearn/decomposition/nmf.py", line 395, in _init
W, H = _initialize_nmf(X, self.n_components_)
File "/opt/anaconda/lib/python2.7/site-packages/sklearn/decomposition/nmf.py", line 116, in _initialize_nmf
x, y = U[:, j], V[j, :]
IndexError: index 1 is out of bounds for axis 1 with size 1
我仍然熟悉 sklearn 工具集,所以我接受这可能是我的一个简单的忽略,因为大部分代码都是从各种示例中录制的。
# Create a dictionary of words from review
def buildDictionary(review) :
buildTFIDF(review)
#[unrelated code]
# Extract topic models from corpus
def buildTFIDF(corpus) :
no_topics = 5
no_features = 100
no_top_words = 10
tfidf_vectorizer = TfidfVectorizer(min_df=1, max_df=1.0, max_features=no_features, stop_words='english')
tfidf = tfidf_vectorizer.fit_transform(corpus)
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print tfidf.getnnz() # sanity checking
print tfidf_feature_names # sanity checking
nmf = NMF(n_components=no_topics, random_state=1, init='nndsvd').fit(tfidf)
display_topics(nmf, tfidf_feature_names, no_top_words)
print ''
# Prints no_top_words for each feature
def display_topics(model, feature_names, no_top_words):
for topic_idx, topic in enumerate(model.components_):
print "Topic %d:" %(topic_idx)
print " ".join([feature_names[i]
for i in topic.argsort()[:-no_top_words - 1:-1]])
究竟是什么导致了这个索引错误,我该如何纠正它?