基本上,将涉及两个步骤:
因此,实施将是 -
def normalize_complex_arr(a):
a_oo = a - a.real.min() - 1j*a.imag.min() # origin offsetted
return a_oo/np.abs(a_oo).max()
用于验证的样品运行
让我们从一个至少有一个[0+0j]
和两个元素的数组开始 - [x1+y1*J]
& [y1+x1*J]
。因此,它们在归一化后的大小应该是1
每个。
In [358]: a = np.array([0+0j, 1+17j, 17+1j])
In [359]: normalize_complex_arr(a)
Out[359]:
array([ 0.00000000+0.j , 0.05872202+0.99827437j,
0.99827437+0.05872202j])
In [360]: np.abs(normalize_complex_arr(a))
Out[360]: array([ 0., 1., 1.])
接下来,让我们为最小元素添加一个偏移量。这不应该在标准化后改变它们的大小 -
In [361]: a = np.array([0+0j, 1+17j, 17+1j]) + np.array([2+3j])
In [362]: a
Out[362]: array([ 2. +3.j, 3.+20.j, 19. +4.j])
In [363]: normalize_complex_arr(a)
Out[363]:
array([ 0.00000000+0.j , 0.05872202+0.99827437j,
0.99827437+0.05872202j])
In [364]: np.abs(normalize_complex_arr(a))
Out[364]: array([ 0., 1., 1.])
最后,让我们添加另一个元素,它距离偏移原点的距离是原点的两倍,以确保这个新元素的大小为 ,1
而其他元素减少到0.5
-
In [365]: a = np.array([0+0j, 1+17j, 17+1j, 34+2j]) + np.array([2+3j])
In [366]: a
Out[366]: array([ 2. +3.j, 3.+20.j, 19. +4.j, 36. +5.j])
In [367]: normalize_complex_arr(a)
Out[367]:
array([ 0.00000000+0.j , 0.02936101+0.49913719j,
0.49913719+0.02936101j, 0.99827437+0.05872202j])
In [368]: np.abs(normalize_complex_arr(a))
Out[368]: array([ 0. , 0.5, 0.5, 1. ])