我是 TFLearn 的新手,我正在尝试一个简单的神经网络来预测输入数组时的输出数组值。
此代码的实际输入将是灰度图像的像素值或从灰度图像中提取的特征。因此输入是二维数组格式。输出将是每个像素的预测颜色。
在示例代码中,我使用了两个大小为 9 的随机数组。当输入“t_x”数组时,我需要训练网络来预测“t_y”数组。代码运行,但预测很差。
代码改编自 TFLearn 的 MNIST 示例,可在此处找到
这是我的代码
from random import randint
import numpy as np
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
#input
t_x = [3, 8, 7, 4, 0, 7, 9, 5, 1]
#output
t_y = [9, 5, 1, 4, 7, 9, 7, 3, 6]
x = []
y = []
for i in range(1000):
x.append(t_x)
y.append(t_y)
#array of input values
x = np.reshape(x,(-1,3,3,1))
#array of output values
y = np.reshape(y,(-1,9))
network = input_data(shape=[None, 3, 3, 1], name='input')
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 9, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': x}, {'target': y}, n_epoch=20)
pred = model.predict(np.reshape(t_x,(-1,3,3,1)))
print "Prediction :", pred[0]
我假设它与“conv_2d”和“fully_connnected”函数中指定的参数值有关。
我必须设置什么值才能获得准确的预测?