我已向 cloud ml 提交了培训作业。但是,它找不到 csv 文件。它在桶里。这是代码。
# Use scikit-learn to grid search the batch size and epochs
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
def create_model():
model = Sequential()
model.add(Dense(12, input_dim=11, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy'])
return model
seed = 7
numpy.random.seed(seed)
FIL = "gs://bubbly-hexagon-112008-ml/dataset/mixed.csv"
dataset = numpy.loadtxt(FIL, delimiter=",")
X = dataset[:,0:11]
Y = dataset[:,11]
model = KerasClassifier(build_fn=create_model, verbose=1)
batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100, 500, 1000]
param_grid = dict(batch_size=batch_size, nb_epoch=epochs)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
提交作业后,我收到此错误。
Traceback (most recent call last): File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main "__main__", fname, loader, pkg_name) File "/usr/lib/python2.7/runpy.py", line 72, in _run_code exec code in
run_globals File "/root/.local/lib/python2.7/
site-packages/trainer/task.py", line 18, in <module> dataset = numpy.loadtxt(FIL, delimiter=",") File "/root/.local/lib/python2.7/
site-packages/numpy/lib/npyio.py", line 803, in loadtxt fh = iter(open(fname, 'U')) IOError: [Errno 2] No such file or directory:
'gs://bubbly-hexagon-112008-ml/dataset/mixed.csv'
-文件在指定的bucket中,其权限包括cloud ml作为阅读器。
-我也用来gcloud beta ml init-project
初始化项目。
- 我创建了一个新的存储桶并将文件放在那里,但得到了同样的错误。
-我的存储桶与我提交的作业位于同一区域。
谢谢